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Abstract

The Neuronal Ceroid Lipofuscinoses (NCLs) are a family of autosomal recessive neurodegenerative disorders that
annually affect 1:100,000 live births worldwide. This family of diseases results from mutations in one of 14 different
genes that share common clinical and pathological etiologies. Clinically, the diseases are subcategorized into
infantile, late-infantile, juvenile and adult forms based on their age of onset. Though the disease phenotypes may
vary in their age and order of presentation, all typically include progressive visual deterioration and blindness,
cognitive impairment, motor deficits and seizures. Pathological hallmarks of NCLs include the accumulation of
storage material or ceroid in the lysosome, progressive neuronal degeneration and massive glial activation.
Advances have been made in genetic diagnosis and counseling for families. However, comprehensive treatment
programs that delay or halt disease progression have been elusive. Current disease management is primarily
targeted at controlling the symptoms rather than “curing” the disease. Recognizing the growing need for
transparency and synergistic efforts to move the field forward, this review will provide an overview of the
therapeutic approaches currently being pursued in preclinical and clinical trials to treat different forms of NCL as
well as provide insight to novel therapeutic approaches in development for the NCLs.
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Background
Lysosomal storage disorders (LSDs), a group of rare disor-
ders involving the accumulation of storage material in the
lysosome, have been estimated to occur in approximately
one in 7500 live births [1, 2]. Neuronal Ceroid Lipofusci-
noses (NCLs), also referred to as Batten Disease, are a sub-
set of lysosomal storage disorders that can arise from
genetic mutations within one of 14 different genes [3]. De-
pending on the genetic mutation, these disorders can affect
individuals ranging from infants to adults, though they are
most commonly referred to as pediatric neurodegenerative
diseases (reviewed in [4–6]). The frequency of NCLs is

dependent on ancestry and geographical setting, with, for
example, an estimated occurrence of up to one in 12,500
live births in Anglo-Saxon countries (reviewed in [7, 8]).
As previously mentioned NCLs can be caused by one

of a number of genetic mutations and can onset at differ-
ent ages. This genetic heterogeneity results in approxi-
mately 9 different forms of NCLs [4, 7]) with three most
common forms being Classic Infantile Neuronal Ceroid
Lipofuscinosis (INCL), Classic Late Infantile Neuronal
Ceroid Lipofuscinosis (LINCL), and Juvenile Neuronal
Ceroid Lipofuscinosis (JNCL; [4]). In addition to the more
common forms of NCL, individuals can also be stricken
with Classic Adult-Onset Neuronal Ceroid Lipofuscinosis,
Finnish variant Neuronal Ceroid Lipofuscinosis, variant
Late Infantile Neuronal Ceroid Lipofuscinosis (vLINCL),
Turkish variant Neuronal Ceroid Lipofuscinosis, and Con-
genital Neuronal Ceroid Lipofuscinosis (reviewed in [4, 7]).
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INCL is an autosomal recessive disorder caused by
mutations in palmitoyl protein thioesterase 1 (PPT-1), a
lysosomal serine lipase with a classical α/β hydrolase
fold [4, 7, 9]. Like all NCLs, INCL primarily affects the
CNS. Phenotypically this disorder presents with retinal
degeneration, speech and motor deterioration, seizures,
flat electroencephalogrphy recordings (EEG) by age three
and premature death at the age 8–14 years [4, 7, 10, 11].
Pathologically, cells accumulate storage material known as
granular osmophilic deposits (GRODs). Many mutations
have been identified in the human gene that contributes
to disease – 64 PPT1 mutations in 268 affected families
(http://www.ucl.ac.uk/ncl/mutation.shtml and [11]). The
top 12 mutations (3 or more families) account for 75 % of
the cases.
LINCL is caused by genetic mutations in tripeptidyl pep-

tidase 1 (TPP-1), which also codes for a soluble lysosomal
enzyme whose substrates are unknown [4, 7, 12–15]. In this
form of NCL as well as the juvenile form, neurons and
other cells of the body accumulation autofluorescent stor-
age material highly enriched in ATP synthase subunit
c. LINCL age of onset is two-four years of life with
presentation of seizures, blindness and progression
motor decline and pathologically there is massive
neuronal cell death. For LINCL, there is a steady state
occurrence of ~ 400–500 patients in the United States; ~
1000 patients in Europe; ~ 14,000 patients worldwide (*es-
timate assumes incidence of LINCL of 1:100,000 live
births: average survival of 10 years, birth-rate of 14/1000
in US and Europe, 19.15/1000 worldwide). There are over
100 identified mutations in TPP1 – with an Arg208Stop
and a c.509-1G > C slice mutation that are most common
(http://www.ucl.ac.uk/ncl/mutation.shtml and [11]). Like
PPT-1, there are also several late-onset variations of
LINCL which are typically compound heterozygous for
hypomorphic and null allele – with patients often surviv-
ing into the fifth decade of life.
JNCL is a fatal lysosomal storage disease caused by

autosomal recessive mutations in the CLN3 gene. JNCL
typically presents in children between the ages of 5–10
years, initiating as blindness and progressing to seizures,
motor loss and cognitive decline, with a decreased life ex-
pectancy into the late teens to early twenties [4, 7, 10, 11].
One very early indicator of disease is the activation of as-
trocytes and microglia in the brain of JNCL mice (CLN3
mutant lines) and human patients [16–18]. Currently, the
physiological function of the CLN3 protein remains elu-
sive, with what is known having been gleaned from CLN3
mutant neurons, yeast, Drosophila and mouse models of
the disease.
Nearly all forms of NCL result in death and, although a

physician may explore a number of treatment strategies
targeted at mitigating or controlling disease symptoms,
there are currently no curative therapies. Numerous

approaches are being utilized to develop potential NCL
therapies. Given that each form of NCL is caused by dif-
ferent genetic mutations and protein deficiencies, thera-
peutics must be tailored specifically for each form of the
disease. However, some general therapeutic strategies may
be effective for different forms of NCL due to overlapping
characteristics; for example, enzyme replacement therapy
could be an effective approach for the forms of NCL
caused by enzyme deficiencies. In this review, we
summarize a number of the therapeutic approaches being
used to treat different forms of this devastating disease
(summarized in Fig. 1).

Current medical management strategies for NCLs
The NCLs represent different diseases caused by mutations
in as many as 14 different genes. NCLs have some common
features but they are different in their clinical features, age
of onset, cell biology and biochemistry, gene mutations and
rate and characteristics of progression. This heterogeneity
can make the discovery and use of new therapies difficult.
So what treatments do we have? People often say “there are
no known treatments for NCLs”. This is untrue. There are
ongoing studies with anti-inflammatories that have pro-
vided some evidence of improved visual outcomes in NCLs.
There are many treatments for epilepsy but very few of
these have been tested specifically in NCLs. There is no
known treatment for the dementia associated with NCL –
although behavioral symptoms and sleep defects can miti-
gate symptoms to some degree. The movement disorders
in NCL vary by form and, thus, so do the treatments. Myo-
clonus is treatable but difficult. Parkinsonism has treatment
options, though ataxia is more refractory to treatment (un-
less those generated by vitamin deficiencies). Supportive
treatment for NCL is also available– physical therapy, occu-
pational therapy, speech therapy, feeding gastrostomy, suc-
tion and airway management and caregiver support and
respite. In all, while there are treatments for NCLs, cur-
rently there are not therapies that change the outcome of
the disease.

Pipeline for drug development
Many new therapies are in the pipeline for the treatment
of NCLs. Most of these may halt or slow the progression
of disease but are unlikely to completely reverse the dis-
ease. Most symptomatic treatment studies in NCL have
come from what we know from other diseases – but very
few studies have been done specifically in NCL patients. In
INCL these have been: Lamotrigine for epilepsy [19–21];
Transdermal fentanyl for pain [22]; Melatonin for sleep/cir-
cadian rhythm disturbance [23–25]; and hematopoietic
stem cell transplant – umbilical cord blood and bone
marrow transplant for disease modification [26]. These
treatments, with a limited number of participants, are diffi-
cult to interpret because the studies are occurring at a time
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of rapid development, which significantly increases the vari-
ability between subjects, making outcomes difficult to
measure. In LINCL, the only completed drug treatment
study has been the melatonin study mentioned above.
There have been a number of LINCL disease modification
studies, such as bone marrow transplantation [27–29] and
antioxidants (selenium, VitE, [30]). It should be noted that
these antioxidant studies were completed prior to the avail-
ability of NCL molecular diagnostics. Additionally, there
are a number of ongoing studies in various stages of clinical
trial (Table 1) including gene therapy trials using adeno-
associated viral vector (ClinicalTrials.gov, NCT00151216)
and stem cell trials using human CNS derived stem cell
treatment (ClinicalTrials.gov, NCT00337636), both which
we will talk about more in this review. What do we need to
do to accelerate this process? Better understanding of the
clinical features of the different NCLs and within type vari-
ants will provide the basis for better symptomatic treat-
ments. We need better understanding of the pathobiology
of the NCLs in order to identify the best course for disease-
modifying treatments. Additionally, we need to develop
new delivery mechanisms – for delivery of enzymes or res-
toration of disease causing mutations.

Gene therapy
Over the past couple of decades gene therapy has devel-
oped into a promising therapeutic treatment option for
LSDs. Recently, the European Union approved its first gene
therapy for the treatment of lipoprotein lipase deficiency
[31]. Unlike lipoprotein lipase deficiency, NCLs are pre-
dominately neurodegenerative diseases, and thus harder to
treat. When one thinks about the use of gene therapy in
the treatment of any disease, including NCLs, there are a

number of technical hurdles that must be overcome. As
mentioned above, delivery to the primary diseased tissues is
critical. In the case of NCLs, this means delivery of the
virus into the central nervous system. There are a number
of different viral vectors that are currently utilized for gene
therapy, including as adeno-associated virus (AAV) and
lentivirus (LV). A particular vector is selected based on sev-
eral factors including: payload (of the size of the gene to be
delivered), the region they need to be delivered to and types
of cells to be targeted to, and how much of the gene needs
to be expressed [32–35]. In addition, these vectors and their
associated serotypes can be modified to gain additional de-
sired properties, including the timing of expression and
tropism to specific cell populations [32–35]. Thus a num-
ber of ongoing studies are focused on tailoring gene therapy
vectors to various forms of LSDs and NCLs.
In terms of NCLs, a number of studies have focused

on using AAV to treat both INCL and LINCL [36–41,
44–46]. Gene therapy studies done by Griffey et al. uti-
lized AAV serotype-2 (AAV2) to treat Ppt1−/− mice; col-
lectively these studies illustrated that AAV-2 increased
PPT-1 activity, reduced levels of autofluorescence, im-
proved retinopathy and eliminated some behavioral phe-
notypes [36–38]. LINCL gene therapy studies have
treated Tpp1−/− mice with various AAV serotypes which
resulted in increased Tpp1 expression, improved behav-
ioral phenotypes and a reduction in autofluorescence
[39–41]. In addition to animal studies, LINCL gene ther-
apy clinical trials (NCT00151216 and NCT01161576)
are currently ongoing (ClinicalTrials.gov) and a prelim-
inary report from study NCT00151216 indicates that the
AAV2 mediated gene therapy shows promise in reducing
the rate of LINCL progression [45].

Fig. 1 Emerging therapeutic approaches for the Neuronal Ceroid Lipofuscinoses. Diagramatic overview of therapeutic approaches being tested in
preclinical and clinical trials

Geraets et al. Orphanet Journal of Rare Diseases  (2016) 11:40 Page 3 of 13



NCL gene therapy studies are not restricted to the
aforementioned approaches. Recent studies have grouped
gene therapy with other therapeutic approaches; for ex-
ample small molecule therapies and hematopoietic stem
cell therapy [46]. Also, other AAV vectors exist and have
been noted to be more effective; for example self-
complementary vectors and AAV9 [47–51]. Previous work
with AAV9 [49, 50] and its potential use in the treatment
of NCLs was discussed at the 2014 Update of
Translational Research for Management of INCL/LINCL
Conference. Based on the results from the NCL gene ther-
apy studies and the conference, gene therapy has great
potential for being an NCL therapeutic.

Enzyme replacement
In addition to gene therapy, enzyme replacement ther-
apy (ERT) is also being heavily pursued as a therapeutic
approach for the treatment of LSDs. A basic search for
ERT and LSDs (using the Department of Health and
Humans Services (HHS) website, ClinicalTrials.gov) re-
sults in more than a hundred registered clinical trials. In
a recent technical brief, it was noted that nine ERTs are
available for the treatment of a limited number of LSDs
within the United States; but unfortunately none are for
the treatment of NCLs [52]. Nevertheless, numerous
preclinical studies have been conducted using ERT to
treat different forms of NCL. ERT seem promising spe-
cifically in INCL and LINCL as these forms of NCL are
caused by enzyme deficiencies. But a number of studies
have reported perturbation in lysosomal enzymes, in-
cluding PPT-1 and TPP-1, in other non-enzyme medi-
ated forms of the disease, suggested ERT may have more
global applications. Pre-clinical ERT studies intended to

treat an INCL mouse model have been limited to only
two studies and have revealed the following: (1) they are
able to effective produce recombinant PPT-1, (2) ERT is
able to clear autofluorescent storage material in certain
peripheral tissues, (3) they are able to achieve partial
delivery of ERT to brain via intravenous injection, (4)
treatment is able to elicit mild changes in phenotype,
and (5) administration of the recombinant PPT-1 is
tolerable in mice [53, 54].
In comparison to INCL, pre-clinical ERT studies for

LINCL have been more extensive. These studies have used
a variety of animal models of disease including mice, dogs
and monkeys and have been administered using alterna-
tive delivery methods: intravenous, intrathecal and intra-
ventricular [55–60]. Collectively, these studies have
demonstrated: (1) distribution of recombinant TPP-1 in-
cludes the brain and peripheral tissues however, distribu-
tion is dependent on the method of delivery, (2) ERT
provides improved disease phenotype and pathology, (3)
there is a reduction in autofluorescent storage material ac-
cumulation within the brain, and (4) depending on the de-
livery method and other various factors, there are minimal
adverse reactions associated with ERT in these animal
models [55–60]. In addition, some of these studies have
led to the development of an ERT clinical trial for the
treatment of LINCL (NCT01907087, Clinicaltrials.gov)
Overall, ERT seems to be a promising therapeutic ap-

proach for the treatment of some forms of NCLs. As with
many therapies, the blood-brain barrier (BBB) seems to be
a persistent obstacle for LSDs that effect the CNS [55–
68]. Given that the CNS is predominantly affected in the
NCLs, methods to surpass the BBB are being addressed in
current preclinical studies and were discussed at the 2014

Table 1 Past and present NCL clinical trials. Currently, there are only eight NCL clinical trials in existence (clinicaltrials.gov). Most of
the trials focus on the treatment of either INCL or LINCL

Trial ID NCL
Form(s)

Therapeutic Approach Proposed Mechanism of Action Preclinical Studies Trial Phase

NCT01399047 JNCL Anti-
inflammatoryMycophenolate
mofetil

Reduction in neuroinflammation and production
of autoantibodies

Seehafer 2011 [144] Recruiting

NCT01161576 LINCL Gene
TherapyAAVrh.10CUhCLN2

Genetically engineer cells to produce non-
mutated TPP1

Sondhi 2007 [41], Sondhi
2008, Sondhi 2012

Recruiting

NCT01414985 LINCL Gene
TherapyAAVrh.10CUhCLN2

Genetically engineer cells to produce non-
mutated TPP1

Sondhi 2007 [41], Sondhi
2008 [42], Sondhi 2012 [43]

Recruiting

NCT01907087 LINCL ERTBMN-190 Source of recombinant functional TPP1 in which
diseased cell can uptake and utilize

Vuillemenot 2014 [58],
Vuillemenot 2014 [59]

Active

NCT00151216 LINCL Gene TherapyAAV2CUhCLN2 Genetically engineer cells to produce non-
mutated TPP1

Sondhi 2005 [39], Passini
2006 [40]

Active

NCT00337636 INCL,
LINCL

Stem CellHuman CNS Stem
cells

Similar to ERT but, human CNS stem cells act as
the source of functional PPT1 and TPP1

Tamaki 2009 [85] Complete

NCT00028262 INCL Small MoleculeCystagon Clears lysosome of storage material Zhang 2001 [174] Complete

NCT01238315 INCL,
LINCL

Stem CellHuman CNS Stem
cells

Similar to ERT but, human CNS stem cells act
the source of functional PPT1 and TPP1

Tamaki 2009 [85], Selden
2013 [91]

Withdrawn

Bold words indicate the therapeutic approach
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Update of Translational Research for Management of
INCL/LINCL Conference. These approaches range from
direct ERT delivery to the brain via intrathecal or intra-
ventricular injections to modifying the recombinant pro-
tein [55–60, 68]. In particular, Meng, et al., demonstrated
that intravenous injections of recombinant TPP-1 could
penetrate the blood-brain barrier if fused to a small re-
combinant section of zapolipoprotein E [60]. Given that
some of these approaches are new to the field of ERT, fur-
ther refinement is ongoing, even as the first ERT trials
have begun in NCL patients.

Small molecule carriers: Trojan horses, modified
receptor, liposomes and nanoparticles
As previously discussed, one of the more challenging obsta-
cles to overcome in LSD therapy development is pene-
trance of the blood-brain barrier. A number of approaches
are currently being explored to surpass the BBB including
peptide modification. In two separate studies, TPP-1 was
modified by either altering the protein glycosylation profile
or combining the TPP-1 peptide sequence with a specific
region of the apolipoprotein E receptor and resulted in in-
creased BBB penetrance [56, 60]. This method, sometimes
referred to as a “Trojan Horse”, utilizes natural cellular
pathways to deliver proteins across the BBB and into target
cells [65, 69]. This method has been effectively applied to
other LSDs including subtypes of Mucopolysaccharidosis
[65, 67, 70, 71].
An additional strategy for effect therapeutic deliver

across the BBB are nanocarriers, including liposomes
(reviewed in [65, 71]). The use of this technology has
also been studies in animal models of both Mucopoly-
saccharidosis and Niemann Pick disease, showing
great potential [64–66, 71–73]. One advantage of
nanocarriers is targeted cell deliver, often achieved by
coating the nanoparticle with different components
(including antibodies to surface proteins) in order to
direct their delivery [65, 71]. This method has been
successfully applied in animal models LSDs to target
cell surface receptors (i.e., using antibodies to
PECAM-1, transferrin receptor (TfR) and intercellular
adhesion molecule 1 (ICAM-1) expressed on endothe-
lial cells of the BBB [64–66, 71–73]. Ansari et al., has
also generated similar liposomal carriers to transport
cargo in NCL cell models [74], further supporting the
use of both peptide modification and nanocarriers as
favorable approaches to deliver NCL therapies into the
CNS and to effected cells.

Stem cell therapy
As the field of regenerative cellular therapies expands,
various different types of stem cells are providing in-
creased utility in the treatment of neurological disorders.
But like with other treatment options, there are a

number of technical considerations that must be taken
in selecting which type of stem cells to test for use in
treatment. What is the best type of cell to utilize? What
is the potential of the stem cell being used to 1) enhance
the immune system and/or 2) replace lost cells? How
will the stem cells be delivered to the damaged tissue?
These are all thing that must be considered. Some LSDs,
including Hurler Syndrome, have shown potential for
being treated with adipose and hematopoietic stem cells
(HSC; [75–79]). A number of NCL mouse model and
patient studies have explored the benefits of HSC ther-
apy but met with limited success partially owing to the
limited patient sample size [26, 28, 29]. The most prom-
ising of these studies has suggested that HSC, specific-
ally bone marrow treatment, offered in combination
with gene therapy in Ppt1−/− mice significantly improved
outcomes even when HSC therapy alone provided lim-
ited or no benefit. Thus, HSC should not be entirely
eliminated as a potential NCL therapeutic.
Neural stem cell therapies, derived from a variety of

sources, are also being studied as a therapeutic for LSDs
including NCLs [80, 81]. Many of these studies utilize ei-
ther murine or human neural stem cells to treat mouse
models of LSDs and data from clinical trials is thus far
limited. Collectively, these studies have shown: (1) neural
stem cells can survive within the CNS, (2) they are cap-
able of migrating away from site of injection, (3) they
can improve disease pathology, including dampening
neuroinflammation, (4) increase enzyme activity, (5) and
improve long-term survival [80–90]. However, the effect-
iveness seems highly variable depending on the type of
LSD and other compounding factors. Tamaki et al.,
showed improved disease outcomes in a Ppt1−/−/NSCID
mouse model following treatment with human CNS
derived stem cells and these findings resulted in a clin-
ical trial (ClinicalTrials.gov, NCT00337636; [85]). The
outcomes from this trial point toward successful trans-
plantation of CNS derived stem cells into both INCL
and LINCL patients ([91]) and thus merit continued ex-
ploration as a possible treatment.
One source of stem cells yet to be explored as a treat-

ment option for NCLs are induced pluripotent stem
cells (iPSCs). Since being first described in 2006 by
Takahashi and Yamanaka, iPSCs have been used for vari-
ous research purposes [92, 93]. A limited yet expanding
number of studies have focused on using iPSCs for
therapeutic purposes [93–96]. Given their potential as a
therapy, the use of iPSCs as a therapeutic approach for
NCLs is now being considered by a number of research
laboratories.

RNA modulation
RNA modulation therapies are a relatively new thera-
peutic approach for lysosomal storage diseases, especially
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the NCLs. There are a number of different RNA modula-
tion therapies [i.e., antisense oligonucleotides (ASO), non-
sense suppression compounds, nonsense mediated decay
(NMD) inhibitors] that have been used effectively in pre-
clinical and clinical trials for a number of different dis-
eases [97–111]. These therapies use different strategies to
reach a similar end-goal – that of producing a partially or
fully functional protein from the targeted mRNA
transcript.
One therapeutic strategy aimed at treating diseases

caused by nonsense mutations involves the use of non-
sense suppression compounds which promote the read-
through of nonsense or premature termination codons
(PTCs). A proportion of PTC-containing transcripts
escape NMD and these compounds induce the ribosome
to incorporate a near cognate amino acid at the PTC,
essentially “reading through” the termination codon.
For these mRNAs, translation continues through the
entire transcript, terminates at the natural termination
codon and thus generates a full-length protein with a
single amino acid substitution at the nonsense mutation.
Read-through therapy, or nonsense suppression therapy, is
currently in clinical trials (Clinicaltrials.gov, NCT00264888,
NCT00592553, NCT01826487, NCT00237380, NCT01140451,
NCT01918384), [112, 113]).
Can these therapies be effectively applied to the NCLs?

Nonsense suppression therapies have been proposed as
treatments for a whole host of LSDs that result from
nonsense mutations. In fact, nonsense mutations in
CLN1 are present in more than 50 % of INCL patients
[114]. Multiple studies have used different read-through
compounds to treat several models of LSDs, including
INCL and LINCL [97–99, 102, 104, 107, 108]. Specific to
the NCLs, gentamicin, an aminoglycoside, can been used
as a nonsense suppression therapy and can increase TPP-
1 activity in LINCL fibroblasts [98]. Moreover, two recent
studies have demonstrated the potential effectiveness of
Ataluren (PTC124; currently in clinical trials for Duchenne
Muscular Dystrophy (Clinicaltrials.gov; NCT00264888,
NCT00592553, NCT01826487) and cystic fibrosis (Clinical-
rials.gov; NCT00237380, NCT01140451)) as a nonsense
suppression therapy for INCL and LINCL with both re-
ports indicating increases in enzyme activity after treatment
of patient-derived lymphoblast cell lines [102, 107]. The po-
tential utility of PTC-124 was further illustrated in vivo
using a recently developed Cln1R151X mouse model [108]
which also showed elevated enzyme activity levels over un-
treated mutant mice. Although PTC-124 has the advantage
of being orally bioavailable and has low toxicity, it has a
narrow therapeutic window and short half-life [115] – so
patients may need to be treated as much as three times per
day, which limits its practical use in patients. However, a
number of additional nonsense suppression therapies are
currently being developed which aim to improve

therapeutic efficacy. Additionally, a number of teams are
starting to combine nonsense suppression therapies with
other treatments. For example, Keeling et al. has shown
that combining read-through compounds with nonsense
mediated decay (NMD) inhibitors intensifies nonsense sup-
pression [106], broadening the possibilities for another po-
tential avenue of NCL therapies.
Another RNA modulating therapeutic approach is the

use of antisense oligonucleotides (ASOs). These short,
modified nucleic acids are designed to bind a target RNA
through complementary base-pairing [103]. The binding
of an ASO to RNA can modify RNA processing by steric-
ally blocking the binding of RNA binding proteins. ASOs
have many favorable drug-like features including low tox-
icity, easy deliverability to a wide-range of cells in vivo,
and stability, with activity in cells lasting up to a year after
a single dose [110]. Several ASO drugs are used in the
clinic and many others are in clinical trials for a number
of diseases and conditions including the pediatric neuro-
degenerative disease spinal muscular atrophy and
Duchenne’s muscular dystrophy [103, 110, 116] as well as
a number that are being utilized in preclinical studies, in-
clude one for the pediatric neurosensory disorder Usher
syndrome [117] and in the lysosomal storage disorder,
Niemann-Pick Type C [101]. Depending on the genetic
mutation, ASOs could potentially be used to treat various
forms of NCLs. Overall, RNA modulation therapies are a
new and expanding therapeutic approach and have great
potential as a therapy for NCL.
ASOs may be useful in combination with nonsense sup-

pression therapies to improve the protein production from
genes with nonsense mutations. A limitation to the non-
sense suppression approach is the activity of the naturally
occurring process in eukaryotic cells called nonsense me-
diated decay (NMD; Fig. 2) [118]. NMD maintains RNA
fidelity by eliminating mRNA transcripts that have PTCs
[119]. In this way, NMD prevents the production of aber-
rant, truncated proteins. However, at the same time, by
eliminating mRNA with PTCs, NMD also limits the
amount of mRNA that can be targeted by nonsense sup-
pression drugs for translational read-through and full-
length protein production Miller Pearce. In order to over-
come this limitation, small molecule inhibitors of NMD
have been explored as potential therapeutic compounds
[120]. The rationale for using NMD inhibitors as a treat-
ment for diseases caused by nonsense mutations is that by
making NMD less efficient, the abundance of mRNA that
is translated will increase, which will increase the efficacy
of nonsense suppression drugs. Recently, Krainer and col-
leagues demonstrated that ASOs that basepair at specific
sequences of a PTC-containing pre-mRNA, were able to
protect the mRNA from NMD [121]. When used in com-
bination with readthrough compounds, the ASO in-
creased full-length protein production from the nonsense-
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mutant allele more than the readthrough compound
alone. A similar approach can be envisioned to aid in the
efficacy of nonsense suppression approaches for NCL.

Anti-inflammatories
Perturbation in normal inflammation response has long
been suspected as an integral part of the pathobiology of
a number of neurodegenerative diseases including lyso-
somal storage disorders [122–129]. It appears that neu-
roinflammation in LSDs can encompass numerous
components such as, alterations in inflammatory associ-
ated gene expression, adjustments in cytokine levels,
microglia activation, lymphocyte infiltration and produc-
tion of auto-antibodies; however, not all LSDs display
the same components [16, 17, 123, 125–147]. Some if
not all of the aforementioned constituents of neuroin-
flammation have been shown to play a role in the patho-
genesis of NCLs: INCL [130, 131, 138, 140, 142, 143,
145, 148–150]; LINCL [150–152] JNCL [16, 17, 133,
134, 139, 144, 146, 147, 150]; CLN5 [150, 153, 154]; and
CLN6 [136, 137].

Based on the fact that inflammation is involved in NCL
disease progression, the use of anti-inflammatories as a
therapeutic approach has been addressed. Mycophenolate
mofetil, an immunosuppressant, when used in Cln3−/− mice
appeared to protect against neuroinflammation, deposition
of immunoglobulin G in the brain, and neuronal cell death
[144] and these findings contributed to an ongoing JNCL
clinical trial (NCT01399047; Clinicaltrials.gov). In contrast,
the use of another anti-inflammatory, minocycline, in a
Cln6 ovine model did not alter disease pathology [136].
Additionally, a number of scientists are actively pursuing
the use of anti-inflammatories to target components of
JNCL associated neuroinflammation. Collectively, these
studies indicate that the success of anti-inflammatories may
be dependent on the form of NCL, and since anti-
inflammatories do not address the underlying cause of
NCLs, these therapies may function best if used in combin-
ation with other treatments.

Lysosomal modulators
Lysosomal storage disorders result from a deficiency in ei-
ther a soluble lysosomal enzyme or a lysosomal

Fig. 2 Nonsense suppression therapies in combination with nonsense mediated decay inhibitors. a Transcripts containing premature termination
codons (PTC) are targeted for degradation via nonsense mediated decay (NMD) resulting in decreased protein production. However, transcripts
that escape NMD predominately lead to the translation of truncated proteins. b The negative effect of PTCs, truncated protein production, can be
suppressed with PTC suppressors and NMD inhibitors. NMD inhibitors prevent NMD resulting in a larger portion of PTC containing transcripts.
PTC suppressors promote the translation of PTC containing transcripts into full-length proteins. When PTC suppressors and NMD inhibitors are
utilized in combination, the outcome is synergistic thus resulting in an increased abundance of full-length proteins
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transmembrane protein, which can result in the accu-
mulation of lysosomal storage material. One obvious
approach is in modulating the lysosome to promote
the clearance of lysosomal storage material. Sardiello
et al. have previously reported that TFEB, a transcrip-
tion factor, can modulate the lysosome by altering the
expression of a number of lysosomal genes [155].
Since then, Palmieri et al. have clarified the genetic
targets of TFEB which include various CLN genes
[156]. Due to the effect of TFEB activation on lyso-
somal genes, TFEB has become a therapeutic target
for lysosomal storage disorders in general, including
the NCLs [157–162]. Studies have identified a num-
ber of TFEB activators; one of which reduces storage
accumulation in LINCL patient fibroblasts [155, 161,
162]. Considering TFEBs targeting of CLN genes and
the recently identified activators of TFEB, lysosomal
modulation via TFEB appears to be a viable thera-
peutic approach for NCLs. In addition to TFEB acti-
vators, other compounds have been shown to
modulate the lysosome of LSDs, including, δ-
tocopherol [163]. It is important to note that
therapeutics based on lysosomal modulation do not
address the underlying cause of NCLs and thus may
be more suitable as a combinatorial therapy.

Small molecules and alternatively targeted
pathways
In addition to the molecules previously discussed, a number
of newer small molecule compounds are just beginning to
be tested for their therapeutic potential in NCLs. Recently,
CRMP2 has been associated with neurodegenerative dis-
eases including the NCLs [164–166]). Due to this associ-
ation, the targeting of CRMP2 utilizing various compounds
(i.e. LKE, lacosamide) may be a therapeutic option for
NCLs [165–172]. In addition, NtBuHA, a hydroxylamine
derivative, was screened by Sarkar et al. in INCL cell lines
and a mouse model; results indicate improved disease asso-
ciated phenotypes, such as storage material and neurode-
generation [173]. Lastly, the small molecule compounds
cysteamine bitartate and N-acetylcysteine have been
assessed using models of INCL, which lead to the clinical
trial (Cinicltrials.gov, NCT00028262 [174–176])
Based on the aforementioned compounds and their

results, small molecules seem to be a potential thera-
peutic option for the different forms of NCL. In order to
identify new small molecule therapies, high throughput
drug screens (HTS) have been used with some success
in a number of LSD studies to screen various compound
libraries [177–179]. Overall, both novel and established
small molecule compounds could be uncovered through
these studies. However, depending on the compounds
mechanism of action they too may function best as a
combinatorial therapy.

Natural treatments (ex. Antioxidents, selenium,
VitE, curcumin)
Analysis of natural compound treatments (i.e., Vitamin E,
selenium) for NCLs began in the late 20th century. Naidu
et al., presented these studies in their report discussing the
use of selenium in three cases of NCL [30]. Since then, vari-
ous studies have focused on using this therapeutic approach
in NCL models. The following are just a few examples:
antioxidants Vitamin E [180] and Resveratrol [181–183];
endoplasmic reticulum modifiers TMAO [184] and
TUDCA [184]; and NtBuHA [173]. Particularly, resveratrol
has shown beneficial effects when used to treat both INCL
and JNCL cell lines in addition to Cln1 knockout mice
[181–183]. Even though different homeopathic treatments
have demonstrated promising results, they too only address
secondary consequences and not the underlying cause of
NCLs. Therefore, in addition to lysosomal modulators, this
therapeutic approach may function well as a combinatorial
therapy.

Conclusions
As the various treatment options that we have reviewed
are being explored, we must simultaneously ensure that
we have a strong foundation on which to successfully ac-
celerate these treatments into and through clinical trials.
This includes making sure that we have the necessary
tools in place to expedite these studies including com-
prehensive natural history studies of the NCLs, detailed
and easy-to-use clinical rating scales, systems for early
diagnosis (including clinical education and distance
medicine for virtual diagnosis), and reliable biomarkers
for tracking disease progression. Our clinical and basic
research teams must be well trained in the ethical and
management issues involved in conducting clinical trials.
Additionally, even at the earliest stages of pre-clinical
work in animal models of the NCLS, the rigor of clinical
research must be applied. Failure to maintain a high
level of rigor can result in our wrongly advancing (or
dropping) therapeutic targets, unnecessary higher costs
of production, unknown risks/benefits, ethical concerns
pertaining to risking patients with invalid candidate ther-
apeutics, and/or late state trial failures that in turn pre-
vent patients from being involved in other trials. Thus, a
number of reports from the NIH and the pharmaceutical
industry have stressed the growing importance of rigor
in how preclinical studies are designed and executed in
order to optimize the predictive value of preclinical
studies [185]. How do we, as members of the research
community ensure that this is happening so that we can
collectively accelerate treatments for the NCLs? We
need to design our studies with increased rigor, includ-
ing blinding our research staff and randomization of
subject group assignment, and ensure that these details
are transparent in grant proposal and research reports.
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Based on the numerous therapeutic approaches dis-
cussed here and their potential as treatments of NCLs,
these factors have to be strongly considered due to the
limited number of patients and the ultimate goal of
identifying curative therapeutics.
We must also all acknowledge that although this re-

view focuses on a number of potential NCL therapies, it
does not include every possibility. In addition to drawing
on the current literature to identify areas of current and
potential focus for therapy development, the authors of
this review are also very active in the NCL research
community and attend a number of research forums fo-
cused on these topics. In particular, a portion of the
topics discussed here and opinions on these potential
therapeutic approaches are highlights from a periodic
forum held between member of the research commu-
nity, patient advocates and public policy group entitled
Batten Disease: Updates on Translational Research for
Management of INCL/LINCL. However, the field of
translational research is moving at an accelerated pace
and we as research scientist, clinical and regulatory offi-
cials must work collectively to streamline efforts that ef-
fectively and efficiently allow new drugs and treatment
strategies to move from the basic laboratory to the pa-
tient as quickly as possible.
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