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Abstract

Background: One of the most important steps taken by Beyond Batten Disease
Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the
State of the Science. We believe that a strong understanding of where we are in our
experimental understanding of the CLN3 gene, its regulation, gene product, protein
structure, tissue distribution, biomarker use, and pathological responses to its defi-
ciency, lays the groundwork for determining therapeutic action plans.

Objectives: To present an unbiased comprehensive reference tool of the experimen-
tal understanding of the CLN3 gene and gene product of the same name.

Methods: BBDF compiled all of the available CLN3 gene and protein data from
biological databases, repositories of federally and privately funded projects, patent
and trademark offices, science and technology journals, industrial drug and pipeline
reports as well as clinical trial reports and with painstaking precision, validated the
information together with experts in Batten disease, lysosomal storage disease, lyso-
some/endosome biology.

Results: The finished product is an indexed review of the CLN3 gene and protein
which is not limited in page size or number of references, references all available
primary experiments, and does not draw conclusions for the reader.

Conclusions: Revisiting the experimental history of a target gene and its product
ensures that inaccuracies and contradictions come to light, long-held beliefs and as-
sumptions continue to be challenged, and information that was previously deemed
inconsequential gets a second look. Compiling the information into one manuscript
with all appropriate primary references provides quick clues to which studies have
been completed under which conditions and what information has been reported.
This compendium does not seek to replace original articles or subtopic reviews but

provides an historical roadmap to completed works.
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1 | INTRODUCTION
Basic knowledge of the expression, regulation, structure,
and function transmembrane-bound and other proteins, en-
ables the discovery of compounds to modulate their behavior.
Along with analyses of disease-causing mutations, investiga-
tors pursue creative approaches to restore protein function(s)
and their associated pathways. Therefore, it is critically im-
portant that academicians, pharmaceutical investigators, and
clinician scientists, be provided with a complete, easy-to-
access, and an up-to-date State of the Science. Historically,
one relied on review articles designed to summarize current
thinking. However, an information explosion fueled by ad-
vances in molecular biology, genetic engineering, and new
animal models, coupled with competing hypotheses of au-
thors and size limits of review articles has resulted in the pro-
duction of irregular, nonsystematic review articles in disease
research leading to unintentional bias and widening knowl-
edge gaps. To combat this problem, investigators new to the
field must spend hundreds of hours sifting, reading, and eval-
uating original publications; defeating the purpose for which
review articles were created.

Beyond Batten Disease Foundation (BBDF) has taken
a lead to help support new and existing researchers in their
quest for experimentally proven, unbiased, information. This
manuscript is part of a larger strategic plan to advance re-
search in Batten disease by fueling the creation of key physi-
cal and informational resources. The foundation worked with
Thomson Reuters to gather referenced CLN3 gene and CLN3
protein information and with painstaking attention to detail,
validated the information together with experts in CLN3 dis-
ease, lysosomal storage disease, and lysosome/endosome bi-
ology. The resultant indexed review of CLN3 and CLN3 is
not limited in size, focuses on information from original arti-
cles, is reviewed by in-area experts and inclusion in validated
databases, and does not draw conclusions. By collecting all
of the available information into a single, searchable refer-
ence manual, this review saves valuable time and ensures all
topic areas are covered; however, readers will still need to
review original literature cited here.

The information found within this reference tool is cul-
tivated by: (a) MetaBase™ (version 6.20), a systems biol-
ogy database, a former product of GeneGo, IntegritySM, (b)
a drug and pipeline information database, Cortellis™, and
(c) a drug and clinical trial information database, Thomson
Innovation™, including patent information from around the
world and public databases (December 2014 version), such as
NCBI, Ensembl, dbSNP, UniProt, MGI and others. The infor-
mation cultivated from these databases was then traced back
its original source and rigorously reviewed. If the experiment
was conducted more than once, all references were added.

The manual includes a research history of the CLN3
gene, discussion of gene regulation, protein structure, tissue

distribution, co-regulated gene expression, biomarker use,
and pathological responses to CLN3 protein deficiencies in
yeast through humans. Supplementary materials include a list
of CLN3 research tools and their associated first-published
reports.

The authors note that following data extraction from the
information systems mentioned above, the information gath-
ered here was verified and the associated primary literature
was cited along with the experimental methods used. We
believe bioinformatics databases such as those mentioned
above offer scientists the opportunity to access and cross-ref-
erence a wide variety of biologically relevant data providing
new insights and further means to validate their discoveries.
However, the authors would like to stress that the databases
listed here were used only to provide a framework for the
document. The rapid release of new data from various —omics
and other programs annotated using computational analysis
sometimes leads to misinformation, which we found to be
the case for the CLN3 gene and protein. Therefore, the au-
thors worked to provide their readership with direct access to
primary, experimentally proven data. Finally, the authors dil-
igently tried to avoid summarizing the information herein in
support of one hypothesis over another or drawing any con-
clusions for the reader. This comprehensive agnostic presen-
tation of experimental findings is meant to complement and
not overlap investigator-driven primary and review literature.

2 | GENERAL INFORMATION

2.1 | Description of the CLN3 gene

The official name of this gene is “ceroid-lipofuscinosis, neu-
ronal 3” and official symbol is CLN3. Less commonly used
terms include BATTENIN, BTS, JNCL (Juvenile Neuronal
Ceroid Lipofuscinosis), and MGC102840. CLN3 was dis-
covered using linkage analysis in search for the disease
causing gene (mutation) in 48 children with progressive vi-
sion loss, seizures, decline of intellect and loss of motor abil-
ity (Eiberg, Gardiner, & Mohr, 1989). Researchers found a
linkage between CLN3 disease and haptoglobin (140100) on
chromosome 16q22 revealing the location of the CLN3 gene
(Eiberg et al., 1989; Gardiner et al., 1990). Linkage studies
in larger groups of families followed by physical mapping of
markers by mouse/human hybrid cell analysis and fluores-
cence in situ hybridization refined the coordinates of CLN3
to the interval between D16S288 and D16S298 (see Figure
1: LinkageMapping, (Callen et al., 1991, 1992; Jarvels,
Mitchison, Callen, et al., 1995; Jarvel4d, Mitchison, O'rawe, et
al., 1995; Lerner et al., 1994; Mitchison, O'Rawe, Lerner, et al.,
1995; Mitchison, O’Rawe, Taschner, et al., 1995; Mitchison
et al., 1994; Mitchison, Williams, et al., 1993; Mitchison,
Thompson, et al., 1993) The final pieces of the puzzle were
added by the International Batten Disease Consortium in
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association with the disease loci have been identified (Mole
16p13.3 .
g & Gardiner, 1991).
16p13.2 Haplotype analysis identified a homozygous deletion
S mutation of 966 base pairs (bps) in 73% of 200 affected
p13. . . . o
S JNCL patients from 16 different countries (Mitchison,
p13. o
1op1a.11 O'Rawe, Lerner, et al., 1995; Mitchison, Thompson, et
al., 1993). This deletion mutation was originally believed
b L :gp::'z to stretch 1.02 kb (Batten Disease Consortium, 1995). As
(!‘ are il 16::12: 4 a result, many reviews and primary articles refer to this
=2 deletion as the “1.02 kb” deletion. However, it was later
= L 16p11.2 confirmed that the common deletion spans 966 bps and is
© ..., therefore more appropriately called the “1 kb” deletion.
- T 2.0 D16S57 Ny 16p11.1 ) .
o bt D~ . Centromere it Cultured fibroblasts from a JNCL patient homozygous for
v~ %' . ® g N ' the common 1 kb deletion have been shown to express a
?‘3 Of.. . 0g \ 16q11.2 major transcript of 521 bps and a minor transcript of 408
QE)" OE" Qa) & bps (Kitzmiiller, Haines, Codlin, Cutler, & Mole, 2008).
- 2 228 16q12.1 The major transcript contains exon 6 spliced to exon 9 and
w = is thought to encode a truncated CLN3 protein contain-
. D16S150 _ 16q12.2 . . . . ..
-~ ’ ing the first 153 amino acids of CLN3 plus an additional
16913 28 novel amino acids resulting from an out-of-frame RNA
sequence at the novel splice site. This gives rise to the fol-
D155151I 16q21 lowing mutant protein sequence:
16q22.1
16q22.2 MGGCAGSRRRFSDSEGEETVPEPRLPLLDHOGAH
Sy e 16q22.3 1 WKNAVGFWLLGLCNNFSYVVMLSAA 60
o & 16923.1
- - 16q23.2 61  DILSHKRTSGNQSHVDPGPTPIPHNSSSRFD 120
®® 16q23.3 CNSVSTAAVLLADILPTLVIKLLAPLGLH
- 16q24.1 121  LLPYSPRVLVSGICAAGSFVLVAFSHSVGTSLC 180
g &) 16924.2 AISCCSHLLRPRTLEGKKKQRAQPGSP
T 16q24.3
55 181 S 181
(ONO)
(Underlined letters indicate truncated first 153 AAs of
FIGURE 1 Linkage Mapping. The location of the gene

responsible for INCL was mapped to a region on chromosome 16.
Initial findings placed the gene on the long arm of chromosome 16,
due to its linkage with the haptoglobin (HP) locus. Later, the location
of CLN3 was narrowed down to markers tagging the 16p11.2 region.
The dinucleotide marker D16S298 is located in an intron of the CLN3
gene and thus represents the true location of CLN3

1995 (Batten Disease Consortium, 1995). Today, we know
that the cytogenetic location of CLN3 is on the short arm
of chromosome 16 at position 12.1 at Genomic coordinates
chr16:28,466,653-28,492,302 [OMIM 607042] (NCBI gene
entry, 1,201 (Jarveld, Mitchison, O'rawe, et al., 1995; Jarveli,
Mitchison, Callen, et al., 1995; Mitchison, O'Rawe, Lerner, et
al., 1995; Mitchison, Williams, et al., 1993).

In 1997, Mitchison and colleagues reported the ge-
nomic structure and complete nucleotide sequence of
CLN3, with an estimated number of 15 exons that span 15
kilobases (kb), (Mitchison et al., 1997). Sequence compar-
isons between CLN3 and homologous expressed sequence
tags suggest alternative splicing of the gene and at least
1 additional upstream exon. Marker loci in strong allelic

CLN3 followed by 28 novel AAs due to a frameshift at the
novel splice site). It is important to note that there is an S
written in error at position 166 in some GenBank entries
(GenBank: EF587245/1 and publications (Kitzmiiller et al.,
2008). This should be a “T” as shown above in yellow high-
light (GenBank accession no AF077964 and AF077968,
which are consistent with genomic sequence NG 008654.2).

2.2 | CLN3 gene details

The full name of the gene is ceroid-lipofuscinosis, neuronal
3, also known by the following symbols (CLN3, BTS, and
JNCL). Gene product names include Batten disease protein,
Batten, and Battenin. CLN3 gene product deficiency results
in a rare, fatal inherited disorder of the nervous system that
typically begins in childhood. The first symptom is usu-
ally progressive vision loss in previously healthy children
followed by personality changes, behavioral problems and
slow learning. Seizures commonly appear within 2—4 years
of vision loss. However, seizures and psychosis can appear
at any time during the course of the disease. Progressive
loss of motor functions (movement and speech) start with
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clumsiness, stumbling and Parkinson-like symptoms; even-
tually, those affected become wheelchair-bound, are bedrid-
den, and die prematurely. [see “CLN3-Clinical Data.” The
neuronal ceroid lipofuscinoses (Batten disease). Ed. Mole,
S.E., Williams R.E., Goebel H.H., Machado da Silva G.,
Cary, North Carolina, Oxford University Press, 2011. Pages
117-119. Print].

The most common name for the disease is Batten disease
which was first used to describe the juvenile and presumably
the CLN3 form (prior to the discovery of the gene). Today the
term Batten is widely used in the US and UK to refer to all 13
forms of neuronal ceroid lipofuscinosis. The disease has also
been called Batten-Mayou disease, Batten-Spielmeyer-Vogt
disease, CLN3-related neuronal ceroid-lipofuscinosis, juve-
nile Batten disease, Juvenile cerebroretinal degeneration, juve-
nile neuronal ceroid lipofuscinosis, Spielmeyer-Vogt disease
and the term adopted in 2012, CLN3 disease. Using the Basic
Local Alignment Search (BLAST) tool to align regions of
similarity between known biological sequences, investigators
discovered that the CLN3 gene is highly conserved amongst
Homo sapiens, Canis Lupus familiaris, Mus musculus, Danio
rerio, Drosophila melanogaster, Caenorhabditis elegans,
Schizosaccharomyces cerevisiae, and Schizosaccharomyces
pombe (Altschul et al., 1997; Katz et al., 1999; Mitchell,
Porter, Kuwabara, & Mole, 2001; Pearce & Sherman, 1997).
The National Center for Biotechnology Information (NCBI)
Gene lists 179 orthologs discovered through comparison of
known sequences.

2.3 | Exon and Intron structure and
alternative splice variants of CLN3

The CLN3 gene on the p-arm of chromosome 16 spanning
bases 28,466,653 to 28,492,302 http://genome.ucsc.edu/
cgi-bin/hgGene?db=hg19&hgg_gene=CLN3 (Haeussler et
al., 2019; Kent et al., 2002) https://www.ncbi.nlm.nih.gov/
variation/view/ (version 1.5.6 last update July 17, 2017). The
CLN3 protein coding sequence begins on exon two at base
544 and ends at the final exon of the mRNA.

The NCBI Reference Sequence (RefSeq) database re-
ports six transcript variants for the CLN3 gene suggest-
ing that alternative splicing affects exons and the 3’ and
5" UTRs (Untranslated Region;(Kent et al., 2002; Pruitt et
al., 2014, https://www.ncbi.nlm.nih.gov/variation/view/;
version 1.5.6 last update July 17, 2017) of the genomic se-
quence. Most of the six isoforms contain between 13 and
16 exons; however, shorter isoforms are also reported in
the Consensus CDS Protein Set. CLN3 isoform a consists
of 438 amino acids (aa), and is encoded by the longest tran-
script variant 1 (NM_001042432.1) (Barnett, Pickle, &
Elting, 1990) and 2 (NM_000086.2), 1915 bp and 1879 bp,
respectively. Transcript variant 3 (NM_001286104.1) en-
codes for isofom b (NP_001273033.1) which lacks an

alternate in-frame exon resulting in a shorter protein of 414
aas. Variant 4 (NM_001286105.1) encodes for isoform c
(NP_001273034.1) which begins with a downstream AUG
(start codon) in the 5'UTR resulting in a different N-termi-
nus. Isoform c also lacks two exons, which gives rise to a
truncated version of the protein consisting of only 338 aas.
Isoform d (NP_001273038.1) encoded by transcript variant
5 (NM_001286109.1) contains variations in both 5’ and 3’
UTRs and lacks an in-frame exon resulting in translation ini-
tiation at a downstream AUG and resultant protein of 360 aas.
Similarly, isoform e (NP_001273039.1) encoded by variant
6 (NM_001286110.1) harbors alterations in the 5" UTR and
lacks an in-frame exon leading to a delay in the initiation of
translation and produces a protein of 384 aas.

RefSeq records are generated when there is experimental
or published evidence in support of the full-length product,
whereas transcript alignments to the assembled genome indi-
cate the possibility of a gene product. RefSeq records list 6
transcripts whereas Ensembl, which is not limited to proven
transcripts, lists 64 potential transcripts for the CLN3 gene,
providing additional clues to CLN3’s spatiotemporal patterns
of expression. However, neither tissue, development, nor dis-
ease-specific studies have been completed to indicate which
transcripts are expressed under various conditions (Zerbino
etal., 2018).

2.3.1 | Impact of splice variants and Single
Nucleotide Polymorphisms on the protein
domain structure of CLN3

Interestingly, mapping the mutations causative of Batten
Disease on a CLN3 topological model reveals that most of
these mutations face the luminal side of the intracellular com-
partments. Moreover, evolutionarily constrained analysis of
the aa sequence revealed that luminal loop 2, is the most
highly conserved domain across species (Gachet, Codlin,
Hyams, & Mole, 2005; Muzaffar & Pearce, 2008). Of par-
ticular note, the most common mutation found in CLN3 dis-
ease patients, the “1kb” deletion in which exons 7 and 8 are
excised, maps within this loop. Similar to the second loop,
the predicted amphipathic helix on the luminal face between
the fifth and sixth transmembrane helices contains several
missense mutations (Figure 2) (Kousi, Lehesjoki, & Mole,
2012; Nugent, Mole, & Jones, 2008). The clustering of a
majority of missense mutations in these two luminal regions
strongly suggests that they are critical sites for CLN3 protein
interaction and function (Cotman & Staropoli, 2012).
Mutations in CLN3 are classically associated with CLN3
disease where retinal degeneration is followed by mental and
physical deterioration and premature death. Recent studies
show that CLN3 mutations may also result in a nonsyndromic
retinal degeneration whose onset differs considerably from
classical Batten disease. CLN3 joins a growing number of
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genes such as TTC8, BBS2, and USH2A, whose mutations are
commonly associated with syndromic diseases that include a
subset of patients with isolated vision loss. Some mutations,
as in the case of CLN3, can result in either phenotype (see
Table 1) (Goyal, Jiger, Robinson, & Vanita, 2016; Rivolta,
Sweklo, Berson, & Dryja, 2000; Shevach et al., 2015).

24 |

The CLN3 gene was sequenced in 1997 following the discov-
ery of the protein. Sequencing began 1.1 kb upstream of the
transcription start site and proceeded to 0.3 kb downstream
of the polyadenylation site. Sequencing led to the conclu-
sion that CLN3 is organized into at least 15 exons spanning
15 kb ranging from 47 to 356 bps in length (Mitchison et
al., 1997). CLN3 also has 14 introns that vary from 80 to
4,227 bps in length. There are a total of 12 Alu repeats in
the forward orientation and 9 in reverse orientation present
within the introns and 5’- and 3’-untranslated regions. The
5’ region of the CLN3 gene contains several potential tran-
scription regulatory elements. Although there are two (TA),
repetitive motifs at nt 135 and 335 in the sequence, there is
no consensus TATA-1 box evident, suggesting that CLN3 is
constitutively expressed (Mitchison et al., 1997). In addition,
using the transcription factor DNA binding site database,
putative cis-acting regulatory elements were found in the 5’
flanking sequence, including potential transcription factor
binding sites for AP-1, AP-2, and Spl, two motifs for the
erythroid-specific transcription factor GATA-1 and three po-
tential CCAAT boxes (Mitchison et al., 1997).

CLN3 gene regulation

24.1 | CLN3 promotor and transcription
factor binding analysis

Several regulatory elements have been found in the 5’ re-
gion of the CLN3 gene; however, the endogenous promoter
of CLN3 has not been definitively characterized yet. To this
end, Eliason and colleagues created transgenic CLN3 mice
by knocking-in a DNA sequence encoding for nuclear-tar-
geted bacterial pB-gal. This was achieved via homologous
recombination of a targeting construct into embryonic stem
cells, such that f-gal transcription was controlled by a na-
tive sequence 5’ to the CLN3 coding region. This resulted
in the replacement of most of exon 1 and all of exons 2-8,
creating an effective null mutation (Ding, Tecedor, Stein, &
Davidson, 2011; Eliason et al., 2007). In these studies, the au-
thors demonstrated that CLN3 is ubiquitously expressed and
that a regulatory and functional region at the 5’ of the gene is
promoting its expression. Other studies have described a pu-
tative promoter region and identified predicted transcription
factor binding sites (see Table 2 for complete list). Moreover,
a multitude of transcription factors have been reported to reg-
ulate CLN3 expression pattern by direct interaction (physical

binding) with the “promoter” region or by indirect interaction
through protein partners. Indeed, TFEB has been shown to
bind to CLEAR elements on the proximal promoter of CLN3,
which increases CLN3 transcription (Palmieri et al., 2011;
Sardiello et al., 2009). TFEB binding sites were first mapped
to —24 (AGCACGTGAT) and +6 (GTCACGTGAT) on the
promoter of CLN3 (Sardiello et al., 2009) and physical bind-
ing of TFEB was then further experimentally verified by
ChIP-seq (Palmieri et al., 2011). Table 2 reports nonredun-
dant transcription factor interactor of CLN3 that regulate its
expression profile. Additional information on each interac-
tion, that is, the type of experimental support and key func-
tional statement, is provided below.

Additionally, transcription factor binding sites were pre-
dicted for the CLN3 promoter using the sequence-based pro-
files of known sites. Position-specific scoring matrices were
applied for 202 human transcription factors or factor dimers
obtained from the JASPAR database (Portales-Casamar et
al., 2010). The promoter region of CLN3 was obtained from
the UCSC Genome Browser using the RefSeq gene bound-
aries (Pruitt et al., 2014). A 1-kb region upstream and 500
bases downstream of the transcription start site (TSS) were
used for this analysis. The motif search was performed using
the MAST tool from the MEME suite (Bailey et al., 2009).

The complete list of predicted transcription factor binding
sites is shown in Table 3. Interestingly, the transcription fac-
tors SP2, ESRRA, KlIf4, and USF2 each have three or more
predicted binding sites in the vicinity of the transcription start
site of CLN3.

In addition to regulation by transcription factors, studies
have demonstrated that various molecules can indirectly reg-
ulate the expression of CLN3. These are listed in Table 4.

25 |

The CLN3 gene encodes a highly hydrophobic protein of
438-amino acids, the three-dimensional structure of which
has not yet been proven through X-ray crystallography
or Nuclear Magnetic Resonance-spectroscopy. The sec-
ondary structure of CLN3 is mainly comprised of trans-
membrane and low complexity cytosolic or luminal spans
(Berman et al., 2000). Computer prediction models sug-
gest CLN3 spans the membrane anywhere from five to ten
times (SPEP + Ensemble 1.0, MEMSAT3 + Swissprot,
MEMSAT3, TMHMM 2.0, PHOBIUS Constrained,
PROFPHD, HMMTOP). However, some experimental
studies support a structure where the N-terminus faces the
intraluminal space of organelles with the C-terminus facing
the cytoplasm, the most widely cited peer-reviewed articles
favor a 6-membrane spanning domain (MSD) model with
both the N- and C-termini facing the cytosol. See Figure
2 table below for more detailed information (Ezaki et al.,
2003; Mao, Foster, Xia, & Davidson, 2003; Mao, Xia, &

Description of the CLLN3 protein
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TABLE 3 Predicted transcription factor binding sites on the

CLN3 gene

Position Relative

to TSS

—329/-123
=323

—734

—549
-1,396

—1,344/-672/
-214

-919
—915
—131
—1,276
=771

—1,469/-1,271/
—807

—545
—1,364

—603/-407/-388

—1,222

—83
—1,349/-677
-172

—495

—1,468
—1,493/-1,102
-1,317
—230

—1,285
—1,253
—1,136
—1,167

—603/-412/
—393/-123

—715/-305
—1,409/-434
—711

-308

—786/—494/-267

—242
—83
—433

Transcription
factor

E2F3
E2F4
EGR2
ELF1
ESR1
ESRRA

FOXA1
Foxa2
FOXCl1
Foxd3
FOXI1
FOXP1

GABPA
Gata4
Klf4

Meisl
NHLHI
NR2F1
NRF1
Pax2
Pax4
PAXS
PBX1
PLAGI
POU2F2
PRDM1
Rfx1
REXS5
Sp2

Tcfep2ll
TFAP2C
THAPI
TP63
USF2

ZBTB33
ZEB1
7fx

p-value

6.9E-05/5.6E-07
8.50E-05
5.90E-05
3.40E-06
3.50E-05

7.4E-05/-9.10
E-05/3.05E-05

1.40E-06
8.20E-08
5.00E-05
3.20E-05
9.80E-05

3.7E-05/2.2
E-05/3.00E-05

5.50E-06
4.40E-05

1.4E-05/3.60
E-05/5.00E-07

9.90E-05
7.50E-05

5.4E-05/2.00E-05

9.60E-05
9.70E-05
2.80E-05

2.2E-06/4.40E-05

4.60E-05
1.60E-06
3.90E-05
8.20E-06
7.60E-05
6.30E-05

1.30E-05/1.90
E-05/6.80
E-05/4.60E-06

8.90E-05/5.70E-05
5.70E-05/1.60E-05

4.60E-05
2.70E-05

8.00E-05/7.60
E-06/7.20E-05

8.80E-05
4.80E-05
2.60E-05

Length
14
10
14
12
19
10

14
11

11
11
14

10
10

14
11
13
10

29
18
11
13
12
14
13
14
14

13
14

19
10

14
8
13

Note: Transcription Factors from MetaCore from Clarivate Analytics (Ekins,
Nikolsky, Bugrim, Kirillov, & Nikolskaya, 2007).
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Davidson, 2003; Ratajczak, Petcherski, Ramos-Moreno, &
Ruonala, 2014).

2.6 | CLN3 protein details
2.6.1 | Consensus sequence elements similar
to other proteins

The CLN3 protein sequence does not display significant simi-
larities to any protein of known function (Muzaffar & Pearce,
2008). However, some consensus sequence elements within
the CLN3 protein allude to its localization, regulation, and
function. Early predictions of CLN3 using Position-Specific
Iterative Basic Local Alignment Search Tool (PSI-BLAST)
revealed a distant but significant sequence similarity between
CLN3 and members of the SLC29 family of equilibrative nu-
cleoside transporters, of which four members are recognized
in mammals (Altschul et al., 1997; Baldwin et al., 2004).
More recent algorithms, such as the Structural Classification
of Proteins (Andreeva et al., 2008) and Protein families
(Pfam) suggest that most of the CLN3 protein (aa 11-433)
has a domain structure consistent with members of the major
facilitator superfamily (MFS; SCOP superfamily 103473;
Pfam clan CLOO1S5). The MFS superfamily is one of the
two largest families of membrane transporters and includes
small-solute uniporters, symporters and antiporters (Marger
& Saier, 1993). Structural similarities between CLN3 and
MEFS family member MFSDS, may provide important clues
as to its function. Indeed, mutations in MFSDS8, which en-
codes a lysosomal protein with 12-predicted transmembrane
domains and unknown function, result in histological and
phenotypical similarities to another form of Batten disease,
CLN7, (Siintola et al., 2007). Moreover, sequence alignment
and Markov modeling predicted the N-terminus of CLN3
to be weakly homologous to fatty acid desaturases. Using
nervous system and pancreatic tissue samples from a murine
homozygous-knockout model of CLN3, investigators dem-
onstrated that A9 desaturase activity was greatly reduced,
while heterozygous carriers displayed intermediate desatu-
rase levels (40%) compared to wild-type animals. Therefore,
the loss of CLN3 appears to result in decreased desaturase
activity on palmitoyl (C16) moieties of protein substrates
(Narayan, Rakheja, Tan, Pastor, & Bennett, 2006; Narayan,
Tan, & Bennett, 2008).

Sequence analysis also indicated a multitude of putative
trafficking and sorting signals, suggesting CLN3 may populate
a variety of organelles. A mitochondrial targeting signal was
identified at residue 11 with a cleavage site at residue 19 (Janes
et al., 1996). Furthermore, targeting studies demonstrated
the existence of two lysosomal sorting signals; (a) a conven-
tional dileucine motif preceded by an acidic patch located
in a putative cytosolic loop of the favored 6-transmembrane
structure (Kyttédld et al., 2004) at 242EEE(X)gLI1254 and (b)
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TABLE 4 Alternative transcriptional regulation
Alternative
Transcription Methods used to Identify Putative Transcriptional
Regulator Protein details Regulator PubMed ID
LactoferrinHSF1 TRFL_HUMAN  CLN3 harbors an One form of LF is secreted in body fluids (sLF) whereas Kim, Kang, and
Deltal fHSFI_ HSF 1 site I at an alternative form deltal LF, regulated by a differ- Kim (2013) and
HUMAN a proximal Alu ent promoter, is present in normal tissues. Delta LF is Pandey et al.
in an antisense downregulated in breast cancer. The CLN3 promoter is (2011)
orientation downregulated in delta LF expressing HEK cell upon
heat shock in microarray experiments.
MITFLactoferrin MITF_ MITF interacts with ~ Putative CLN3 promoters have been pulled down by Bertolotto et al.
HUMANTRFL_  the putative CLN3 gene-wide chromatin immunoprecipitation of MITF. (2011) and Kim
HUMAN promoter One form of LF is secreted in body fluids (sLF) whereas etal. (2013)
DeltaLf an alternative form deltal LF, regulated by a differ-
ent promoter, is present in normal tissues. Delta LF is
downregulated in breast cancer. CLN3 is downregu-
lated in delta LF expressing cell's.promoter.
N-Myristoylation N-myristoyl- N-Myc regulates Using SILAC, researchers found that CLN3 is N-myris- Chen et al. (2008)
N-Myc transferase_ transcription of toylated. The authors studied changes in gene expres- and Nishiyama
(HUMAN) CLN3 sion in embryonic stem cells after the induction of et al. (2009)
MYCN_MOUSE various transcription factors. CLN3 was included in the

analyses.

an unconventional motif in the long C-terminal cytosolic tail
consisting of methionine and glycine separated by nine amino
acids [M(X)9G] (Kyttild et al., 2005, 2004; Jérveld et al., 1998;
Kidaet al., 1999; Storch, Pohl, & Braulke, 2004). Interestingly,
green fluorescent protein (GFP)-tagged CLN3 with a double
mutation in the dileucine motif (Leu425Leu426), a putative
lysosomal targeting motif, to glycine (Gly425Gly426) still
co-localized with lysosomal associated membrane protein-1
(LAMPI) in chinese hamster ovary (CHO) cells, suggesting
that the dileucine motif is not required for the targeting of
CLN3 to the lysosome. Since the dileucine motif is conserved
among species, these results suggest that CLN3 contains ad-
ditional lysosomal targeting sequences or different lysosomal
targeting signals altogether (Kida et al., 1999). In contrast trun-
cations of CLN3: GFP-CLN3(1-322), GFP-CLN3(138-438),
and CLN3(1-138)-GFP do not localize to lysosomes (Kida et
al., 1999) indicating that the missing regions either contain im-
perative lysosome targeting signals or their absence alters the
3D structure of the protein.

Initial studies suggested that yeast CLN3 homolog Btnl
in S. cerevisiae and S. pombe localizes to yeast vacuoles
(Croopnick, Choi, & Mueller, 1998; Gachet et al., 2005;
Pearce, Ferea, Nosel, Das, & Sherman, 1999; Wolfe, Padilla-
Lopez, Vitiello, & Pearce, 2011). However, more recent
studies suggest that experimental tags may have mislocal-
ized the protein. Indeed, when not tagged at its C-terminus,
Btn1 localizes to the Golgi apparatus (Codlin & Mole, 2009;
Dobzinski, Chuartzman, Kama, Schuldiner, & Gerst, 2015;
Kama, Kanneganti, Ungermann, & Gerst, 2011; Vitiello,
Benedict, Padilla-Lopez, & Pearce, 2010).

2.6.2 | Post-translational
modifications of the CLN3 protein

CLN3 contains several putative post-translational modifica-
tion (PTM) motifs which contribute to the targeting and an-
choring of CLN3 to distinct biological membranes (Casey,
1995). These motifs include four putative N-glycosylation
sites, two putative O-glycosylation sites, and consensus se-
quences for phosphorylation, myristoylation, and farnesyla-
tion (Ellgaard & Helenius, 2003; Golabek et al., 1999;
Haskell, Carr, Pearce, Bennett, & Davidson, 2000; Jarveld
et al., 1998; Kaczmarski et al., 1999; Kida et al., 1999; Mao,
Xia, et al., 2003; Michalewski et al., 1998, 1999; Nugent
et al., 2008; Pullarkat & Morris, 1997; Sigrist et al., 2013;
Storch, Pohl, Quitsch, Falley, & Braulke, 2007; Taschner, de
Vos, & Breuning, 1997b).

Glycosylation

Alignment and comparison of the CLN3 amino acid se-
quences across species (human, canine, murine, and yeast
CLN3; Genbank Accession number U32680, 1.76281.1,
U68064, AF058447.1) revealed a number of highly con-
served N-X-S/T motifs, indicating conservation of putative
glycosylation sites. In vitro translation of CLN3 produced a
singlet at 43 kilodaltons (kDa) in the absence of microsomal
membranes and a doublet at 43 and 45 kDa in the presence
of microsomal membranes (using rabbit antibody 385/CLN3
raised against residues 242-258 [EEEAESAARQPLIRTEA],
which map to the long cytosolic loop according to the most
cited prediction model). Similarly, intracellular synthesis and
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maturation of CLN3 in COS-1 and HeLa cells also identified
the 43 kDa nonglycosylated and a 45 kDa glycosylated forms
of CLN3. In detail, pulse-chase of transfected COS-1 cells
followed by immunoprecipitation showed a single band of
43 kDa 1 hr following the pulse, while further chase up to 6 hr
revealed a characteristic doublet of 43 and 45 kDa. Human
N-glycosylated CLN3 protein is sensitive to endoglycosidase
H suggesting a high-mannose type glycosylation (Jirveld et
al., 1998). In contrast, murine CLN3 contains complex-type
N-linked sugars that differ from the human CLN3 (Ezaki et
al., 2003). Moreover, mass spectrometric analyses revealed
that CLN3 exhibits tissue-dependent glycosylation patterns
(Ezaki et al., 2003). Thus, the apparent molecular weight of
glycosylated CLN3 protein may vary depending on cell type
and species (Golabek et al., 1999).

Expression of GFP-CLN3 fusion protein resulted in a
66 and a 100 kDa bands in neuroblastoma and CHO cells,
whereas in COS and HeLa cells only the 66 kDa band is de-
tectable. Expression of GFP alone resulted in a 27kDa band,
indicating that CLN3 alone would result in ~39 and ~73 kDa
bands, respectively. Pulse-chase experiments revealed that
the 66 kDa form appears first, followed by the 100 kDa band.
Both the 66 and 100 kDa forms are digested by complex oli-
gosaccharide amidase Peptide -N-Glycosidase F down to
64 kDa. Whereas glycosidase Endoglycosidase H only di-
gests the 66 kDa form. Thus, the 100 kDa form is a complex
oligosaccharide in some cell types (Golabek et al., 1999).

N-linked glycosylation of integral membrane proteins in
the ER and in the early secretory pathways, has been shown
to be important for protein folding, oligomerization, quality
control, sorting and function (Ellgaard & Helenius, 2003).
Human CLN3 possesses four potential N-glycosylation sites
(N49, N71, N85, and N310). Glycosylation of N49 is physi-
cally unlikely because this residue is located in the first mem-
brane domain. Mutational analyses demonstrated that N71
and N85, located in the first luminal domain, are N-linked
glycosylated (Storch et al., 2007). It remains unclear whether
N310, in the third luminal domain, is N-linked glycosylated
(Mao, Foster, et al., 2003; Storch et al., 2007). N-glycosyla-
tion is not required for the proper trafficking of CLN3, as
neither treatment with the N-glycosylation inhibitor tunica-
mycin, nor single or double substitution of N71 and N85 af-
fected the stability or the trafficking of CLN3 to lysosomes
(Golabek et al., 1999; Kida et al., 1999; Storch et al., 2007).

CLN3 also possesses two putative O-glycosylation sites at
T80 and T256 (Consortium 1995). However, O-glycosylation
sites are poorly defined, not necessarily utilized, and T256
is predicted to be cytoplasmic, which is not compatible with
glycosylation.

Phosphorylation
Sequence analyses using the ScanPROSITE tool (Sigrist
et al., 2013) suggest that CLN3 contains nine putative
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phosphorylation sites: six on cytoplasmic loops (Ser12, Ser14,
Thr19, Thr232, Ser270, Thr400) and three on luminal loops
(Ser69, Ser74, Ser86) (Nugent et al., 2008). Previous com-
puter-based predictions identified 10 serine and 3 threonine
residues that may undergo phosphorylation (Michalewski et
al., 1998). GFP-CLN3 expressed in CHO cells incorporates
32P in both the 66 and 100 kDa forms, when incubated with
cAMP-dependent protein kinase (PKA), cGMP-dependent
protein kinase (PKG) or casein kinase II. The reaction was
reversed by alkaline phosphatase, indicating that GFP-CLN3
is indeed phosphorylated (Michalewski et al., 1998, 1999)
by PKA, PKG, and casein kinase II and can be enhanced by
inhibition of protein phosphatase 1 or protein phosphatase
2A. However, as these studies relied solely on in vitro assays
using kinase activators or phosphatase inhibitors, future stud-
ies based on protein knockdown in cellular systems will be
useful to better assess the specificity and the biological role
of each of these proteins in the regulation of CLN3. However,
phosphorylation is important for multiple physiological
functions such as membrane targeting, protein—protein in-
teractions and the formation of functional complexes, the
phosphorylation states and significance of CLN3 phospho-
rylation remain elusive. The generation of CLN3 phospho-
mutants would have merit for fully elucidating the biological
relevance of these PTMs.

Myristoylation

A putative N-myristoylation site exists at 2GGCAGS7
in human (Genbank Accession number U32680), canine
(Genbank accession number L76281.1) and murine (Genbank
Accession number U68064) CLN3. The significance of this
lipid modification to CLN3 has not been explored experi-
mentally. However, covalent attachment of myristoyl group
by an amide bond to an alpha-amino group of a N-terminal
glycine has been implicated in protein-protein and protein-
lipid interactions, membrane targeting, and numerous signal
transduction steps. Conservation of N-myristoylation motifs
in human, dog, and mouse as well as isoprenylation motifs
in human, dog, mouse and yeast suggest that CLN3 could be
a membrane-attached protein despite the lack of a signaling
peptide (Taschner, de Vos, & Breuning, 1997a).

Prenylation/Farnesylation

Prenylation refers to the addition of hydrophobic molecules
to a substrate, and involves the transfer of either farnesyl or
geranyl-geranyl moiety to C-terminal cysteine(s) of the target
protein. It is believed that prenyl group modifications facili-
tate attachment to cell membranes, similar to lipid anchors.
Farnesylation is a type of prenylation, where an isoprenyl
group is added to a cysteine residue. These modifications
are important for protein—protein and protein—membrane
interactions. Sequence analyses of CLN3 predict a CAAX
motif 435CQLS438 at the C-terminus that can be prenylated



16 of 41 Wl LEy_Molecular Genetics & Genomic Medicine

MIRZA ET AL.

Open Access,

TABLE 5 Locations of experimentally determined regions/

residues

Region/residue Location References

N-terminal Cytoplasmic ~ Ezaki et al. (2003) and
Ratajczak et al. (2014)

1-33 Cytoplasmic

2-18 Lumenal Mao, Foster, et al. (2003) and
Mao, Xia, et al. (2003)

N71 Lumenal

N85 Lumenal Storch et al. (2007)

97-121 MSD [SPEP + Ensemble 1.0,
MEMSAT3, + Swissprot,
MEMSAT3 + CLN3,
TMHMM 2.0, PHOBIUS
Constrained, PROFPHD,
HMMTOP]

199 Lumenal Mao, Foster, et al. (2003)

210-231 MSD [SPEP + Ensemble 1.0,
MEMSAT3, + Swissprot,
MEMSAT3 + CLN3,
TMHMM 2.0, PHOBIUS
Constrained, PROFPHD,
HMMTOP]

250-264 Cytoplasmic Mao, Foster, et al. (2003) and
Mao, Xia, et al. (2003)

242-258 Cytoplasmic Kyttdlad et al. (2004)

4276-303 MSD [SPEP + Ensemble 1.0,
MEMSAT3, + Swissprot,
MEMSAT3 + CLN3,
TMHMM 2.0, PHOBIUS
Constrained, PROFPHD,
HMMTOP]

N310 Lumenal Mao, Foster, et al. (2003) and
Storch et al. (2007)

321 Lumenal Mao, Foster, et al. (2003)

S401 Cytoplasmic Kyttdla et al., (2004) and
Ratajczak et al. (2014)

406433 Cytopasmic Nugent et al. (2008)

Cys435 Cytoplasmic Storch et al. (2007)

C-terminal Cytoplasmic Mao, Xia, et al. (2003) and

Ratajczak et al. (2014)

*Computer Modeling was included for MSDs for which all prediction models
support the same conclusion.

(Taschner et al., 1997a). Coupled translation/prenylation re-
actions of CLN3 and tetra-peptides in vitro demonstrate that
the CQLS sequence acts as a good acceptor for a farnesylation
group (Kaczmarski et al., 1999; Pullarkat & Morris, 1997).
Furthermore, glutathione S transferase (GST)-fusion CLN3
protein, and CLN3 synthesized in a cell-free environment act
as prenylation substrates. Prenylation of GST-CLN3T greatly
enhances its association with membranes. Since prenylation
occurs at protein termini, this modification at the C-terminus

of CLN3 may create an additional, terminal loop, which con-
tradicts the assumption that the C-terminus is free-floating in
the cytosol (Kaczmarski et al., 1999). Substitution of C435
by C435S does not affect CLN3 exit from the endoplasmic
reticulum (ER) or transport to lysosomes in COS7 cells but
trafficking rate and sorting efficiency are affected (Storch
et al., 2007). Incubation with increasing concentrations of
farnesyltransferase inhibitor 1.-744,832 prevented prenyla-
tion of CLN3, which resulted in an increase in the fraction of
CLN3 at the plasma membrane, suggesting that C-terminal
lipid modification of CLN3 is important for proper sorting
(Storch et al., 2007). It is important to note that while se-
quence similarities and short-term in vitro experiments are
helpful, no experimental data exists demonstrating the func-
tion of PTMs of CLN3 protein in vivo.

2.7 | Biosynthesis, trafficking, and
intracellular localization of CLN3

In summary, CLN3 contains a farnesylation site at residues
that are presumed to anchor the protein to intracellular or
plasma membranes. However, mutagenesis of the putative
farnesylation motif did not alter lysosomal localization of
untagged, overexpressed CLN3. Thus, predicted farnesyla-
tion of CLN3 is not required for its lysosomal localization
(Haskell et al., 2000; Pullarkat & Morris, 1997) but may have
other, yet unidentified, roles.

2.7.1 | Biosynthesis, trafficking, and
intracellular localization of wild-type CLN3

Due to its low expression, hydrophobic nature, and lack of
suitable antibodies capable of detecting endogenous CLN3,
examination of the biosynthesis, PTMs, intracellular traf-
ficking and localization of CLN3 were performed via over-
expression in COS-1, HeLa, baby hamster kidney (BHK),
and normal rat kidney epithelia (NRK) cell lines. Most of
the results are based on antibodies raised against the N-ter-
minal domain (h345, aa4-19) or the large second cytosolic
loop of human CLN3 (h385, aa242-258, Q438, aa251-265)
(Haskell et al., 2000; Jarveld, Lehtovirta, Tikkanen, Kyttila,
& Jalanko, 1999).

Pulse-chase experiments in transfected COS-1 cells in-
dicated that CLN3 is synthesized as an N-glycosylated
single-chain polypeptide and is localized to the lysosomal
compartment (Jarveld et al., 1998). Moreover, double im-
munoflourescence analyses in CLN3 overexpressing HelLa
cells revealed strong co-localization of CLN3 with the ly-
sosomal marker protein Lampl (Kyttédld et al., 2004). This
study likewise revealed a weak co-localization of CLN3 with
markers of the ER and early endosomes (early endosomal
antigen 1; EEA1), whereas no colocalization was detected
with the 300 kDa mannose 6 phosphate (M6P) markers of
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the trans-Golgi/late endosome network, plasma membrane
or mitochondria. Colocalization of CLN3 with lysosomal
marker protein Lamp-1 was also confirmed in transiently
transfected BHK cells (Jarveld et al., 1999) and in neuronal
cells. In transfected primary hippocampal neurons and glia
cells CLN3 co-localized mainly with the lysosomal marker
Lamp-1 and occasionally with EEA1 (Kyttila et al., 2004).
In transfected mouse primary telencephalic neurons, the dis-
tribution of CLN3 overlapped with lysosomal markers and
synaptic vesicle marker SV2 (Jarveld et al., 1999). Indeed,
the vast majority of studies on CLN3 have been in relation
to the lysosome or have assumed that the primary function
of CLN3 is lysosomal. However, it is important to note that
CLN3 is present in multiple compartments of the cell, the
significance of which is unknown. For instance, CLN3 was
also detected at the Golgi/trans-Golgi network and in more
peripheral transport vesicles. Some particles were also de-
tected at the plasma membrane (Kyttild et al., 2004).

To rule out mislocalization of CLN3 due to high over-
expression, lysosomal localization of CLN3 was confirmed
by double immunoflourescence microscopy in NRK cells
stably expressing low levels of CLN3 in an inducible man-
ner (Girotti & Banting, 1996; Kyttilid et al., 2004; Luiro et
al., 2004; Reaves & Banting, 1994). Moreover, cryoimmu-
noelectron microscopy of NRK cells stably transfected with
untagged CLN3 demonstrated co-localization of CLN3 with
cathepsin D and LIMPII in lysosomal structures.

Lysosomal sorting motifs of CLN3

Traditionally, M6P-tagged lysosomal enzymes are trans-
ported to late endosomes via vesicular transport. To test
whether CLN3 is transported by the same mechanism as
lysosomal enzymes, investigators expressed GFP-CLN3
in CHO cells in presence of [-M6P. No radioactive sig-
nal was incorporated into GFP-CLN3 suggesting that
CLN3 is directed to the lysosomal membrane by an al-
ternative mechanism (Michalewski et al., 1999). Indeed,
lysosomal targeting of membrane proteins is mediated by
short linear sequences located in their cytosolic domains
(Braulke & Bonifacino, 2009). These include tyrosine
and acidic cluster dileucine-based lysosomal sorting mo-
tifs which fit the consensus sequences (YXXO) and (D/E)
XXXL(L/T), respectively, where X can be any amino acid
and O is an amino acid with a large hydrophobic side chain
(Bonifacino & Traub, 2003). These sorting motifs inter-
act with cytosolic heterotetrameric adapter proteins AP1-5
which mediate the packaging of transmembrane cargo into
vesicles (Robinson, 2015). Amino acid sequence analysis
of the carboxy-terminal region of CLN3 suggests that the
C-terminal contains one or more tyrosine-binding motifs
(370-374, 378-382, 387-391) which are linked to cyto-
plasmic adapter complexes involved in sorting of integral
membrane proteins to lysosomes (Honing, Sandoval, &
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von Figura, 1998; Ohno et al., 1998). CLN3 also possess
a novel dominant dileucine-based sorting signal in the pre-
dicted second cytoplasmic loop, EEE(X)8LI, and an un-
conventional M(X)9G sorting motif in the C-terminal tail
(Kyttdld et al., 2004; Storch et al., 2007). These complex
sorting motifs are required for the transport of CLN3 to
lysosomes. Using binding assays and immunoflourescence
techniques, researchers determined that the dileucine motif
binds both AP-1 and AP-3 in vitro and both adaptor com-
plexes are required for sequential sorting of CLN3 protein
(Kyttila et al., 2005) (Figure 3).

Localization of endogenous CLN3 protein

Ezaki and coworkers demonstrated by subcellular fraction-
ation of mouse livers that endogenous CLN3 is present in
lysosomal fractions positive for the lysosomal markers cath-
epsin B, cathepsin D, Lampl, Lamp2, and Limp2 (Ezaki
et al.,, 2003). No codistribution of CLN3 with the mito-
chondrial marker subunit IV of cytochrome oxidase or the
Golgi apparatus marker G58K was found in mouse liver.
Immunohistochemistry of rat liver showed partial colocaliza-
tion of endogenous CLN3 with the lysosomal marker acid
phosphatase and the late endosomal marker lysobisphospha-
tidic acid. However, CLN3 did not overlap with EEA1, the
cis-Golgi marker protein GM 130, or the ER marker protein
disulfide isomerase (PDI, Ezaki et al., 2003). Lysosomal
localization of endogenous CLN3 was also demonstrate in
human tissue by a proteomic approach using purified mem-
branes of placental lysosomes (Schroder, Elsdsser, Schmidt,
& Hasilik, 2007).

Localization of CLN3 mutant protein
More than 60 different mutations in the CLN3 gene have
been identified in patients with CLN3 disease (see Table 1
and http://www.ucl.ac.uk/ncl/cIn3.shtml). The most com-
mon genomic deletion (of 966 bp) results in the biosynthesis
of a truncated CLN3 polypeptide composed of 153 canoni-
cal amino acids followed by 28 novel amino acids (Batten
Disease Consortium, 1995). Based on experimentally deter-
mined membrane topology of the Ruonala group the mutant,
truncated CLN3 protein is composed of the first two trans-
membrane domains and a large, C-terminal cytosolic domain
(Ratajczak et al., 2014). Based on an alternative schematic
model of Nugent and coworkers the mutant, truncated CLN3
is composed of the first three transmembrane domains fol-
lowed by 28 novel amino acids located on the luminal side
of the membrane (Nugent et al., 2008). In both cases, mutant
CLN3 lacks three or four transmembrane domains, the cyto-
solic loop, and the C-terminal domain containing the lysoso-
mal sorting motifs and the C-terminal CQLS farnesylation
site (Kyttild et al., 2004; Storch et al., 2007).

Pulse-chase analyses of truncated CLN3 expressed in
BHK cells revealed a 24 kDa polypeptide which was not
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further processed in a 6 hr chase period (Jirveld et al., 1999).
Double immunoflourescence analyses of truncated CLN3 ex-
pressed in BHK cells revealed major co-localization of CLN3
with the ER marker PDI indicating its retention in the ER
(Jarveld et al., 1999). In line with these findings, substitution
of the entire C-terminal domain of CLN3 with cytoplasmic
tails of M6P receptors led to retention of chimeric proteins in
the ER indicating the importance of the CLN3 C-terminal for
proper ER exit (Storch et al., 2007).

It has long been a matter of debate whether patients that
are homozygous for the 966bp deletion in CLN3, produce
a biologically active mutant protein. Studies conducted by
investigators at the University College London comparing
healthy, and affected patient fibroblasts in the presence of
RNA interference, support the presence of mutant CLN3
transcripts and postulate the presence of CLN3 protein ac-
tivity (Kitzmiiller et al., 2008). In contrast, researchers at
Sanford Children's Health Research Center found a substan-
tial decrease in the transcript level of truncated CLN3 in
patient fibroblasts, together with the analysis of transcripts
expressed in the CIn3DexI-6 mouse and in silico prediction
of the expected consequences of truncated protein, support
the argument that nonsense-mediated decay ensures that
no functional (mutant) protein is made (Chan, Mitchison,
& Pearce, 2008; Miller, Chan, & Pearce, 2013). Moreover,
researchers at Massachusetts General Hospital provide fur-
ther evidence that support the role of nonsense-mediated
decay in the regulation of mutant CLN3 protein. However,
Northern blot analyses of liver, kidney and brains of wild-
type and homozygous mutant Cln3Dex7/8 knock-in mice re-
vealed decreased yet stable levels of mutant RNA consistent
with the presence of CLN3 mRNA in patient tissue (Cotman
et al., 2002; "Isolation of a novel gene underlying Batten dis-
ease, CLN3. The International Batten Disease Consortium,"
1995). Unfortunately, due to challenges associated with the
ability of current reagents (antibodies) to detect endogenous
CLN3 protein, no consistent results regarding intracellular
localization or quantification of the protein have been pos-
sible for either wild-type, mutant, or variant forms of CLN3
protein.

Expression and localization studies of disease-associated,
CLN3 missense mutations suggest that reduced or complete
loss of CLN3 function results in decreased protein half-life
rather than a mislocalization. These studies also indicated that
in CLN3 disease, caused by missense mutations, it is the loss
of protein and not mislocalization that contributes to patho-
genesis. In BHK cells expressing CLN3 E295K, the mutant
CLN3 protein co-localized with Lamp-1 indicating correct
lysosomal localization (Jarveld et al., 1999). Moreover, in
transiently transfected human epithelial lung carcinoma cells
(A-549) mutant CLN3 with patient-derived missense muta-
tions V330F, R334H, L101P, L170P, and E295K colocalized
with the lysosomal marker Lamp-1, further supporting proper

lysosomal localization with these mutations (Haskell et al.,
2000). Conversely, expression of CLN3 carrying nonsense
and frameshift mutations led to a retention of the protein in
the ER. In HeLa cells transiently expressing p. Glu399X or p.
CLN3 fsG424, mutant CLN3 colocalized with the ER protein
PDI in immunoflourescence analyses indicating retention in
the ER (Kyttild et al., 2004). No experimental evidence exists
on the consequences of other nonsense mutations (p.Trp35X,
p-Glul7X, p.Glu72X, p.Arg89X, p.Serl61X, p.Serl62X,
p.Tyr199X, p.GIn211X, p.Lys262X, p.Glu395X, p.Tyr322X,
p.GIn327X, p.GIn352X, p.Thr400X, p.Ser423X) or frame-
shift mutations (p.Thr80Asn fsX12, p.Tyrl24Leu fsX36,
p-Argl27Pro fsx55, p.Argl27Gly fsX54, p.Gly154Ala fs29,
p-Vall42Leu f{sX39, p.Glyl87Asp fsX48, p.Glyl190Glu
fsX65, p.Alal96Gly fsX40, p.Ser208Phe fsX28, p.Gly-
264Val fsX29, p.His315GIn fsX67, p.Leu350Cys fsX27,
p.Leu379Met fsX11, p.Leud25Ser fsX87) identified in CLN3
patients. For a visual representation of disease-causing muta-
tions, see Figure 2. For more and continually updated infor-
mation regarding disease-causing mutations please see http://
www.ucl.ac.uk/ncl/cIn3.shtml.

Transient expression of the 966bp deletion, a common
JNCL mutation and Q295K, a missense mutation predicted to
be in the 5th transmembrane of the 6-transmembrane model
described by Nugent et al (Nugent et al., 2008) demonstrated
that CLN3 protein with the common mutation is retained in
the ER, whereas, Q295K mutants localize to the expected ly-
sosomal compartment (Jarveld et al., 1999). Q295K is associ-
ated with an atypical presentation of juvenile Batten disease.
Visual failure initiates and proceeds similar to children with
the common deletion. However, normal MRI results have
been reported for 2 decades longer than in patients with the
common deletion (Jarveld et al., 1997; Wisniewski, Connell,
et al., 1998).

NB: There is an error in Jarvela et al 1999 read-
ing the amino acid code. The missense mutation is
a change of glutamic acid (not glutamine) to lysine
(i.e. E295K, not Q295K)

The 461-677 common deletion mutant localizes to the cell
soma whereas wild-type and Q295K co-localize to the cell soma
and neurites. The authors further report CLN3 co-localizes with
synaptic vesicle marker SV2 (antibody developed by Kathleen
Buckley Harvard Medical School, Boston MA). Localization of
wild-type CLN3 protein to synaptic vesicles has not been con-
firmed by another laboratory. In 2001, Luiro and colleagues
reported, using the same polyclonal antibody raised against
amino acid residues (242-258, EEEAESAARQPLIRTEA),
that CLN3 protein targets to synaptic fractions but not
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synaptic vesicles (Jarveld et al., 1998; Luiro, Kopra, Lehtovirta,
& Jalanko, 2001). Human retinal cells transfected with CLN3
and immunostained with an antibody raised against the CLN3
peptide 242-258 showed a beads-on-a-string pattern in neu-
rites, partial co-localization with SV2, and no co-localization
with LAMPI (Luiro et al., 2001).

Localization of epitope-tagged CLN3 protein

Golabek and colleagues reported results obtained from ex-
pressing full-length CLN3 fused with GFP in COS-1, HeLa,
and human neuroblastoma (SK-N-SH) cell lines. Using
western blotting, Percoll density gradient fractionation, and
Triton X-114 extraction, the authors demonstrated that the
product of the CLN3 gene is a highly glycosylated protein
found within membrane-enriched fractions (Golabek et al.,
1999). [The authors state that the results of their experi-
ments indicate that CLN3 protein is lysosomal. However, the
fractionation methods used do not separate subcellular and
plasma membranes from one another, therefore making it im-
possible to tease out the precise localization of CLN3].

Kida and colleagues expressed full-length and truncated
CLN3 fused to GFP at its N-terminus (GFP-CLN3) in CHO
and SK-N-SH cell lines (Kida et al., 1999). Using co-immu-
noflourescence analyses the authors showed that full-length
GFP-CLN3 fusion protein colocalizes with lysosomal mark-
ers Lamp-1 and Lamp-2 and with the late endosomal marker
Rab7. GFP-CLN3 was found in the ER, in a few vesicular
structures of the Golgi apparatus, and in COPI-coated ves-
icles, most likely due to the presence of newly synthesized
CLN3 trafficking from the ER to the Golgi apparatus. GFP-
CLN3 did not colocalize with markers of mitochondria or
plasma membrane. In contrast, truncated GFP-CLN3 that
lacked either the C-terminal domain (GFP-CLN3 aa 1-322
and GFP-CLN3 aa 1-138) or the N-terminal domain (GFP-
CLN3 aal38-438) did not codistribute with lysosomal
markers thus, indicating their mislocalization. Most of the
truncated fusion proteins either localized to the cytoplasm,
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nucleus, or ER similar to GFP alone. However, mutant
CLN3, with double-point mutations Leu425Leu426 into
Gly425Gly426, at its putative dileucine motif, localized to
lysosomes, in a similar fashion to wild-type, full-length GFP-
CLN3 (Kida et al., 1999). Studies in CHO cells stably ex-
pressing GFP-CLN3 in the presence of the pharmacological
N-glycosylation inhibitor tunicamycin suggest that N-glyco-
sylation is not required for correct targeting of CLN3 to lyso-
somes. However, treatment with Monensin, a Na+ ionophore
which blocks glycoprotein secretion, produced retention of
GFP-CLN3 in vesicular structures of the Golgi apparatus in
the perinuclear space, suggesting that CLN3 fusion protein is
transported to the lysosomal compartments through the trans-
Golgi cisternae (Kida et al., 1999).

In contrast to the data described above, Haskell and co-
workers showed a nonvesicular distribution of N-terminal
tagged GFP-CLN3 which overlapped with the Golgi marker
beta-COP in transfected A549 cells, indicating its localiza-
tion to the Golgi apparatus (Haskell, Derksen, & Davidson,
1999). Haskell et al also found no colocalization of GFP-
CLN3 with lysosomal marker Lamp-1 or the mitochondrial
marker mtHSP60. When disrupted in the presence of brefel-
din A, ER-like staining was noted. The authors postulated
that, if wild-type CLN3 protein localizes to lysosomes and
mitochondria under normal conditions, their N-terminal tag
disrupts such localization.

CLN3 fused to GFP at its C terminus (CLN3-GFP) mainly
colocalized with Golgi markers as determined by immunoflu-
orescence analysis (Kremmidiotis et al., 1999). In transiently
transfected fibroblasts, HeLa and COS-7 cells and stably
transfected HeLa cells CLN3-GFP fluorescence codistrib-
uted with wheat germ agglutinin coupled to Texas red. Stable
expression of CLN3-GFP in HeLa cells showed perinuclear,
asymmetric localization with the Golgi apparatus, minor lo-
calization to the ER and lysosomes, and no apparent localiza-
tion to the nucleus, mitochondria, or cell surface membrane.
A juxtanuclear, asymmetric Golgi-like localization pattern

lysosome lumen

,,,,,,,,,,,
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cytoplasm
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was also observed in transiently transfected HeLa, COS-7,
and fibroblast cells (Kremmidiotis et al., 1999).

272 |

More than 80% of the GFP-CLN3 fusion protein can be
extracted by phase separation in a solution of Triton X-114
indicating that CLN3 is a highly hydrophobic membrane pro-
tein (Michalewski et al., 1999).

Using immunoelectron microscopy, investigators ana-
lyzed the intracellular processing and localization of two
CLN3 protein mutants, 461-677 deletion, or the “1 kb”
deletion present in 85% of CLN3 alleles (73% of affected
patients) and E295K [corrected], a rare missense mutation.
Pulse-chase labeling and immunoprecipitation of the 461—
677 deletion and E295K mutation indicated that 461-677
deletion protein is synthesized as a ~24 kDa polypeptide,
whereas the maturation of E295K mutant [corrected] re-
sembles wild-type CLN3 protein. Transient expression of
the two mutants in BHK cells showed that 461-677 deletion
protein is retained in the ER, whereas E295K [corrected]
mutant was capable of reaching the lysosomal compart-
ment. Using mouse primary neurons, investigators showed
that wild-type and E295K [corrected] mutant CLN3 pro-
teins localize to the soma and neurites, whereas the 461—
677 deletion protein is not found in neurites (Jarveld et al.,
1999).

Overexpressed, mutant CLN3 protein

3 | TISSUE DISTRIBUTION

CLN3 is universally expressed in multiple human tissues.
Immunoblot, immunohistochemistry, Northern blot, and
PCR analyses reveal CLN3 protein and mRNA expression in
the nervous system, glandular/secretory system, skeletal mus-
cle, gastrointestinal tract, and cancer tissues (Chattopadhyay
& Pearce, 2000; Margraf et al., 1999; Persaud-Sawin,
McNamara, Rylova, Vandongen, & Boustany, 2004; Rylova
et al., 2002).

In the brain, reactivity for CLN3 is present in astrocytes
and neurons, and is more pronounced in the cells of the gray
matter, where a larger percentage of astrocytic cells were
stained. Capillary endothelium also showed cytoplasmic
CLN3 expression. Overall, the expression is similar in inten-
sity and distribution in all of the areas of brain examined,
including frontal and temporal cerebral lobes, hippocampus,
basal ganglia, and pons (Chattopadhyay & Pearce, 2000;
Margraf et al., 1999). Peripheral nerves also express CLN3
(Margraf et al., 1999; Persaud-Sawin et al., 2004).

In the glandular/ secretory system CLN3 is present in the
pancreas (islet somatostatin-secreting delta cells) (Boriack
& Bennett, 2001; Margraf et al., 1999), kidney, testis (in
the Sertoli and maturing germ cells), lungs, lymph nodes,

placenta, uterus, prostate, ovary, liver, adrenal gland, thy-
roid, salivary gland, and mammary gland (Chattopadhyay &
Pearce, 2000; Margraf et al., 1999).

In the gastrointestinal tract, CLN3 expression is found in
stomach, duodenum, jejunam, ileum, ileocecum, appendix,
colon and rectum (Chattopadhyay & Pearce, 2000; Rylova
et al., 2002). CLN3 is also expressed in fibroblasts (Persaud-
Sawin et al., 2004), heart, and skeletal muscle (Chattopadhyay
& Pearce, 2000).

In cancer tissues, CLN3 mRNA and protein are overex-
pressed in glioblastoma (U-373G and T98g), neuroblastoma
(IMR-32, SH-SYS5Y, and SK-N-MC), prostate (Dul45,
PC-3, and LNCaP), ovarian (SK-OV-3, SW626, and PA-1),
breast (BT-20, BT-549, and BT-474), and colon (SW1116,
SW480, and HCT 116) cancer cell lines, but not in pancreatic
(CAPAN and As-PC-1) or lung (A-549 and NCI-H520) can-
cer cell lines. Indeed, CLN3 expression is 22%-330% higher
in 8 of 10 solid colon tumors when compared with the corre-
sponding normal colon tissue control (anHaack et al., 2011;
Rylova et al., 2002; Zhu et al., 2014).

3.1 | Gene expression data analysis
for CLN3

Tissue expression of CLN3 was retrieved from several sets of
expression data collected across the ArrayExpress database
(Rustici et al., 2013) and NCBI GEO (GSE1133, GSE2361,
GSE7307, GSE30611) (Barrett et al., 2013) (Table 6).

Briefly, each Affymetrix microarray data set was down-
loaded and preprocessed by MASS5.0 algorithm followed by
quantile normalization. Updated Entrez-centric BrainArray
CDF files were used for normalization. RNA-Seq datasets
were downloaded in the already pre-processed formats
from the ReCount and SEQC ("Rat Body Map") websites,
respectively. In each dataset, gene expression levels were
transformed into Z-scores by gene centering on zero and
dividing the centered profiles by their standard deviation.
The box plot for each tissue reflects the distribution of
probe set expression signals (log2-scaled) across the sam-
ples of this tissue. The median signal is depicted as black
line in the middle of the box; box borders represent the
25th and 75th percentiles of signal distribution. Empty dots
represent the “outliers” — samples with unusually high or
low expression signal.

The expression of human CLN3 across the E-MTAB-62
dataset is plotted in Figure 4, while the mouse GSE10246 and
rat GSES53960 data sets are presented in Figure 5 and Figure
6 respectively. We see the highest CLN3 expression in human
placenta and leukocytes. Similarly, CLN3 expression is high-
est in mouse placenta and leukocyte-associated tissues (bone
marrow, spleen, and bone marrow). The tissue distribution
available in the rat dataset is limited but the CLN3 expression
profile differs noticeably, in that expression is highest in rat
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TABLE 6 NCBI GEO data sets used for tissue specific expression analysis

Figure (below) Dataset Species  Platform

Figure 4 E-MTAB-62  Human Affymetrix

HG-U133A

Affymetrix
Mouse Genome
430 2.0 Array

Illumina HiSeq
2000

Figure 5 GSE10246 Mouse

Figure 6 GSE53960

Figure 7 GSE1133 Human Affymetrix
HG-U133A,
GNFIM (non-
commercial),
GNFI1H (non-

commercial)

Affymetrix HG-
U133 Plus 2

Figure 8 GSE7307 Human

testis and then spleen, while testis expression in human is
relatively low (~ —1.5 relative to median tissue expression).
Additional human tissue distribution plots of each dataset are
available in Figures 7 and 8.

Expression of CLN3 across human tissues and cell types
was independently assessed using large-scale data: such as
public microarray data sets. The most widely used data set
for whole-genome human tissue expression is GenAtlas;
with 79 human tissues examined by Affymetrix HG U133A
microarrays normalized using the GCRMA algorithm. Most
tissue samples have only 2 replicates, so the conclusions
about expression specificity must be drawn with caution
(Figure 7).

Expression of CLN3 is uniform across the majority of tissues
profiled in the GeneAtlas data set (Figure 9). The first (dashed)
line indicates mean signal of 9.5 RFU. A few tissues have elevated
signal of 3X mean (BDCA4 + Dendritic cells, CD4 + helper T-
Cells) and maximum expression is seen in placenta.

When compared across species, the shared tissue sam-
ples show a clear trend towards high expression in placenta
(Figure 10).

3.1.1 | CLN3 RNA expression data using
GTex Portal

Quantification of gene expression in this data set is mainly
done using RNA-seq. Tissue-specific gene expression data
can be found at http://www.gtexportal.org/home/gene/CLN3
(Lonsdale et al., 2013). CLN3 seems to be highly expressed
in colon as compared to other tissues in this dataset. This data
does not include placenta and hence, cannot be compared to
the above microarray datasets.

Description

Human gene expression atlas of 5,372 samples representing 369 different
cell and tissue types, disease states and cell lines.

Multiple tissues were taken from 182 naive male C57BL6 mice and hy-
bridized to mouse genome arrays to profile a range of gene expressions
in normal tissues.

As part of the SEQC consortium efforts, a comprehensive rat transcrip-
tomic BodyMap created by performing RNA Seq on 320 samples from
11 organs of both sexes of juvenile, adolescent, adult and aged Fischer
344 rats.

Custom arrays that interrogate the expression of the vast majority of
protein-encoding human genes were developed and used to profile a
panel of 79 human tissues. The resulting data set provides the expression
pattern for thousands of predicted genes, as well as known and poorly
characterized genes.

677 samples representing 90 distinct tissues from normal and diseased
human tissues were profiled for gene expression using the Affymetrix
U133 plus 2.0 array

312 |
for CLN3

The largest proteomics database on tissue expression, Protein
Atlas (Uhlen et al., 2010), also confirms widespread expression
of CLN3 throughout the organism. Unfortunately, no immuno-
histochemistry or western blot analysis are available for CLN3
to determine the range or intensity of protein distribution across
tissues. This is most likely due to the lack of high-quality anti-
bodies to CLN3 protein. To date, there are over 30 antibodies
in the academic and pharmaceutical sectors. All exhibit either
limited CLN3 reactivity, high nonspecific binding or both.

Protein expression data analysis

313 |
in mice

Tissue distribution of CLN3 protein

Using two CLN3- specific antibodies, one directed at the N-
terminal (5-19) and the other at the mid-region (225-280),
CLN3 was detected in various mouse tissues (Ezaki et al.,
2003). Brain, liver, pancreas, and spleen were tested using
both the antibodies. Mouse CLN3 protein was detected as
a smear between 45 and 66 kDa in liver, kidney, pancreas,
and spleen. In the brain, a CLN3 band is observed closer to
55 kDa. With both antibodies CLN3 signal in brain tissue
was weaker than in the other tissues mentioned above.

4 | PROTEIN-PROTEIN
INTERACTIONS

This section presents protein-protein and nucleic acid-protein
interactions of CLN3. The interactions contain directionality,
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effect (activation, inhibition, etc.) and mechanism (binding,
phosphorylation, transcriptional regulation, etc.).

As stated previously, the function of the CLN3 has not
been completely elucidated. This is not surprising as trans-
membrane proteins, like CLN3, are highly hydrophobic and
difficult to stabilize in solutions for study. This section is
designed to answer specific questions regarding binding of
CLN3 to other proteins. Some statements mention putative
functions for CLN3. For a full exploration of the proposed
functions, the reader should consult the primary literature.

4.1 | Interactions with Kinases and
Phosphatases

As mentioned in the phosphorylation section above, CLN3
has been demonstrated to interact with, and be phosphoryl-
ated by, PKA, PKG, and casein kinase II. Moreover, it is
dephosphorylated by protein phosphatase 1 or protein phos-
phatase 2A (Michalewski et al., 1998, 1999) see phospho-
rylation section for more information. The phosphorylation
of CLN3 may play a role in its interaction with membrane
compartments, regulation of protein interactions and forma-
tion of functional complexes.

42 | C2-Ceramide

The genes that are transcriptionally regulated during ceramide-
mediated cell death are poorly understood. Puranam et al. found
that CLN3 does not inhibit C2-ceramide-induced apoptosis but
modulates endogenous ceramide synthesis and suppresses apop-
tosis by preventing the generation of ceramide (Puranam, Guo,
Qian, Nikbakht, & Boustany, 1999). Accordingly, overexpres-
sion of CLN3 protects cells from vincristine-, staurosporine-,
and topside-induced apoptosis, but not from ceramide-induced
cell death (Puranam et al., 1999). In addition, C2-ceramide has
been found to induce the expression of CLN3 in PC12 cells,
which could represent a negative feedback mechanism regu-
lating endogenous ceramide generation for cellular protection
from cell death (Decraene et al., 2002).

4.3 | Interactions with Endosomal-
Lysosomal proteins

Although the function of CLN3 protein remains unknown,
several findings support the conclusion that lysosomes and
endosomes are prominent sites of CLN3 activity. CLN3 con-
tains multiple lysosomal targeting signals including a non-
conventional signal in the C-terminus, and although any of
these are sufficient for transport of CLN3 to lysosomes, all
are required for optimal transport efficiency (Kyttild et al.,
2004). CLN3 binds directly to active, guanosine triphosphate
(GTP)-bound Rab7 and Rab-interacting lysosomal protein
as confirmed by mammalian two-hybrid experiments with a

peptide corresponding to amino acids 1-40 of CLN3. These
experiments suggest that CLN3 binds to Rab7 via its N-ter-
minus and that this interaction occurs most favorably with the
GTP-bound form of Rab7 (Kyttila et al., 2004; Uusi-Rauva
et al., 2012). Rab7 facilitates vesicular transport and deliv-
ery from early to late endosomes and late endosomes to lys-
osomes. The role of Rab7 in vesicular transport is dependent
on its interactions with effector proteins, among them RILP,
which aids in the recruitment of active Rab7 (GTP-bound)
onto dynein-dynactin motor complexes to facilitate late en-
dosomal transport on the cytoskeleton (Agola et al., 2015).

To examine putative interactions between CLN3 and mi-
crotubule-binding protein, Hookl1, investigators conducted
in vitro binding assays with cytoplasmic Hook!1 and two pu-
tative cytoplasmic domains of CLN3 (1-33 and 232-280).
When compared with the GST vector alone, putative CLN3
cytoplasmic domains (1-33 and 232-280) bound with low af-
finity to Hook1 (Luiro et al., 2004). When Hook1 and CLN3
proteins were co-expressed with individual GFP-tagged Rab
7,9, and 11, Hookl was found to specifically interact with
Rab7, Rab9, and Rab11. In contrast no direct interactions be-
tween CLN3 and the Rab proteins were found (Luiro et al.,
2004). These findings implicate CLN3 in a complex cellular
machinery connecting cytoskeletal dynamics to endocytic
membrane trafficking. It is proposed that this interaction may
be disturbed in the absence of CLN3, thus leading to endo-
cytic dysfunction in CLN3 deficient cells (Luiro et al., 2004).
Indeed wild-type CLN3 protein (CLN3p, 48-52 kD) traffics
from Golgi to lipid rafts at the plasma membrane via Rab4-
and Rab11-positive endosomes (Persaud-Sawin et al., 2004).
However, mutant CLN3 protein does not appear to localize to
the plasma membrane in JNCL fibroblasts. Instead, mutant
CLN3p was retained within the Golgi and partially mis-lo-
calized to lysosomes, failing to reach recycling endosomes,
plasma membrane, or lipid rafts (Persaud-Sawin et al., 2004).
Moreover, the yeast homolog of CLN3, BTN, has also been
shown to play a role in endosome-Golgi retrograde transport
by regulating SNARE protein function (Kama et al., 2011).
Although BTN1 does not directly interact with SNARE: , it
was shown to modulate Sed5 phosphorylation by regulating
Yck3, a palmitoylated endosomal kinase. This may involve
modification of the Yck3 lipid anchor, as substitution with a
transmembrane domain suppresses the deletion of BTN1 and
restores trafficking (Kama et al., 2011).

4.4 | Interactions with Calsenilin/dream/
KChIP3

Yeast two hybrid (Y2H) and immunoprecipitation assays
show that Calsenilin (also known as downstream regulatory
element antagonist modulator (DREAM) and K+ channel in-
teracting protein 3 (KChIP3)), a neuronal Ca2+-binding pro-
tein, interacts with the C-terminal region of CLN3 (385-438)
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and that an increase in Ca’* concentration promotes the dis-
sociation of CLN3 from calsenilin. Calsenilin has been found
to act as a transcriptional repressor, and its activity has been
linked with neuronal excitation and repolarization of K+
channel (An et al., 2000). Calsenilin binds DNA in a Ca’* de-
pendent manner and increases the expression of wild-type or
C-terminal CLN3 and suppresses thapsigargin mediated cell
death. Thapsigargin is a sarco/endoplasmic reticulum Ca’*-
ATPase pump inhibitor, a research tool used to raise cytosolic
Ca®" and induce Ca’*-mediated cell death. In the absence of
CLN3, such as in the case of CLN3 knockout mice or human
SH-SYS5Y cells deficient in CLN3, cells are more sensitive to
thapsigargin (Chang et al., 2007). The CLN3-Calsenilin in-
teraction was not confirmed by Tandem Affinity Purification
coupled to Mass Spectrometry (TAM-MS) combined with
Significance Analysis of Interactome (SAINT) in human SH-
SYS5Y cells (SH-SY5Y-NTAP-CLN3, (Scifo et al., 2013)).
More work is needed to understand the physical properties
and functional role(s) of CLN3 and Calsenilin interactions.
In 2015, investigators utilized an autophagy assay, a pro-
cess previously shown to be disrupted in the CbCln32¢ 73478
mouse model of the disease (Cao et al., 2006), which used green
fluorescent protein-tagged LC3 transgene to label autophago-
somes in mouse cerebellar CbCIn3™ “”2475 ce]] lines. Using
these cell lines, investigators screened small molecule modifi-
ers of autophagy to discover the sensitivity of disease cell mod-
els to alterations in autophagy which impact Ca®* regulation. In
these experiments, thapsigargin reproducibly displayed signifi-
cantly more activity in mouse knock-in cerebellar neurons as
well as in induced pluripotent stem cells derived from patients
with the common deletion. The mechanism of thapsigargin sen-
sitivity was Ca”*-mediated, and autophagosome accumulation
in JNCL cells could be reversed by cytosolic Ca" chelation.
Interrogation of intracellular Ca** handling highlighted alter-
ations in ER, mitochondrial, and lysosomal Ca™* pools and in
store-operated Ca*" uptake (Chandrachud et al., 2015).

45 |

It has long been presumed, due to the similarity of clinical
features and pathological hallmarks between various NCLs,
that NCL proteins are part of the same or similar cellular
pathways and that there is some degree of interaction be-
tween NCL proteins. Some studies support this conclusion.
The 13 proteins encoded by NCL genes do not all localize to
endosomal/lysosomal pathways, some are situated in com-
partments of the secretory system such as the ER; these can
be found in Table 7.

Interactions with other NCL proteins

45.1 |

Palmitoyl protein thioesterase 1 (PPT-1), encoded by
ceroid-lipofuscinosis, neuronal 1 (CLNI), is a small

Interaction with CLN1
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soluble glycoprotein involved in the catabolism of lipid-
modified proteins during lysosomal degradation. The en-
coded enzyme removes thioester-linked fatty acyl groups
such as palmitate from cysteine residues on multiple
protein targets (Cho & Dawson, 1998; Cho, Dawson, &
Dawson, 2000). Defects in this gene are linked to a rapidly
progressing lysosomal disease by the same name, CLNI1
disease. CLN1 disease may also be referred to as infantile
neuronal ceroid lipofuscinosis (INCL) as the vast majority
of reported cases of the disease present around 18 months
of age. Like most pediatric forms of NCL, patients expe-
rience progressive vision loss, cognitive and motor defi-
cits, seizures and early death. With the advent of increased
genetic testing, cases of late infantile, juvenile and adult-
onset CLN1 have been reported suggesting that less severe
mutations of the gene produce some or modified versions
of the PPT-1 protein (Van Diggelen et al., 2001). The pos-
sibility that CLN1 and CLN3 gene products interact with
one another was raised by studies demonstrating that PPT-1
localizes to synaptic vesicles and CLN3 to synaptosomes
(Ahtiainen, Diggelen, Jalanko, & Kopra, 2003; Hellsten,
Vesa, Olkkonen, Jalanko, & Peltonen, 1996; Lehtovirta et
al., 2001; Luiro et al., 2001; Sleat et al., 1997). However,
direct interaction between PPT1 and CLN3 protein was
not demonstrated by co-immunoprecipitation, while paral-
lel studies with CLN1 and CLN2 demonstrated interaction
between the two. In the same study no benefit to cellular
growth or apoptosis was observed in CLN3 deficient cells
transfected with CLN1, whereas benefits were observed
with CLN2 and CLN6 expression (Persaud-Sawin et al.,
2007). More recent studies using TAM-MS combined with
bioinformatics SAINT demonstrated an interaction be-
tween CLN3 and PPT1; however, it is not clear whether
this interaction is direct (Scifo et al., 2013).

4.5.2 | Interaction with CLN2

The ceroid-lipofuscinosis, neuronal 2 (CLN2) gene encodes
tripeptidyl peptidase I (TPP-1), a serine protease which
cleaves N-terminal tripeptides from the free N-termini of
small polypeptides and also shows minor endoprotease activ-
ity (Golabek et al., 2003, 2004). Mutations in CLN2 result
in late-infantile neuronal ceroid lipofuscinosis previously
referred to as LINCL, but now more commonly known as
CLN2. Normal human lymphoblasts and COS-7 cell lysates
immunoprecipitated with an anti-CLN3 antibody and probed
with an anti-CLN2 antibody, detected a 48—50 kD band. This
suggested that CLN2 and CLN3 physically interact with one
another, which was further supported by co-localization ex-
periments performed in the same study (Persaud-Sawin et
al., 2007). In addition, C57BL/6 mice homozygous for tar-
geted disruption of the CLN3 gene exhibit elevated CLN2/
TPP1 protease activity in the brain, implying a biochemical



240f41 WI LEY_Molecular Genetics & Genomic Medicine

MIRZA ET AL.

Open Access,

placenta_basal_plate
leukocyte
blood_vessels_umbilical_vein
lung_fetal
connective_tissue
lymph_node

bladder

thymus

blood

lung

ovary

liver

fallopian_tube

tonsil

intestine_small
prostate

skin

kidney

eye

bone_marrow

conjunctiva

thyroid_gland
blood_vessels_aorta
blood_from_umbilical_cord
esophagus

blood_fetal
muscle_smooth

bone

muscle_skeletal
kidney_mesagnium
brain_cortex_prefrontal
bronchial_epithelium
adipose_tissue
bladder_mucosa
heart_atrial_myocardium
myometrium
heart_left_ventricular_myocardium

[N N I T T A I [ I |

brain_hypothalamus o
heart_cardiac_ventricle b--
brain_caudate_nucleus F-- r-|- Seasd
hypopharynx
brain_hippocampus -
oropharynx ]
brain_cerebellum k- --4 ©
testis 1
brain_cortex_frontal oo +[Ml--+©
skin_epidermis S ]
brain_region_unspecified boemmemee i—
T T T I T T T T
-3 -2 -1 0 1 2 3 4

FIGURE 4 Tissue expression profile of CLN3 across dataset E-MTAB-62 (human)NCBI GEO GSE2361

connection between the gene products of CLN3 and CLN2
(Mitchison et al., 1999). More recent studies using TAM-MS
combined with bioinformatics SAINT also demonstrated
an interaction between CLN3 and TPP-1; however, it is not
clear whether this interaction is direct (Scifo et al., 2013).

4.5.3 | Dimerization of CLN3

A transmembrane topology where CLN3 contains 6 trans-
membrane domains with both the N- and C-terminal
domains facing the cytosol is currently favored and is sup-
ported by both computer modeling and experimental evi-
dence (Kyttdld et al., 2004; Nugent et al., 2008; Ratajczak

et al., 2014; Storch et al., 2007). An alternative model which
predicts a 5-transmembrane topology of CLN3 also exists
(Mao, Foster, et al., 2003). However, neither the function of
CLN3 nor its functional tertiary structure have been solved
yet. When COS7 cells overexpressing N-terminally Myc-
tagged CLN3 are permeabilized and incubated in the ab-
sence or presence of chemical cross-linkers BS? and DMS,
tagged CLN3 forms SDS-stable 88-kDa proteins, presumed
to correspond to a CLN3 homodimer (Storch et al., 2007).
However, experimental artifacts may result in the formation
of dimers or oligomers simply via hydrophobic interactions
therefore, whether CLN3 forms a functional dimer remains
to be confirmed.
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454 |

CLNS protein (CLN5p) is a highly glycosylated protein of
unknown function which, similar to CLN3, localizes to lys-
osomes and neurites (Holmberg et al., 2004; Isosomppi, Vesa,
Jalanko, & Peltonen, 2002; Jalanko, Patrakka, Tryggvason,
& Holmberg, 2001). Pathogenic mutations lead to its reten-
tion in ER/ Golgi and the Finnish variant late infantile form
of NCL (VLINCLFin, (Holmberg et al., 2000; Savukoski et
al., 1998). Late infantile, juvenile, and adult-onset forms of
CLNS disease have been reported. Co-immunoprecipitation

Interaction with CLNS5

and in vitro binding assays revealed that CLN3 protein in-
teracts directly with wild-type CLNS5 synthesized as 47-,
44-, 41-, and 39-kDa polypeptides, as well as CLN5 mutants
FIN,,, EUR, and SWE. In this study, both CLN3 and CLN5
were transfected into COS cells as this cell line did not have
sufficient endogenous levels of the proteins for investigation
(Vesa et al., 2002, Figure 1a).

All forms of CLNS5 retained their localization to ly-
sosomes and their ability to interact with CLN3 protein
(synaptosome fraction not tested, Vesa & Peltonen, 2002).
Pull-down experiments by Lyly and colleagues in 2009 with
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GST-mCLNS also captured CLN3 protein, supporting the this is unknown. CLNS protein has molecular connections to
conclusions of Vesa and colleagues (Lyly et al., 2009). When CLN3 and at least to four other NCL proteins; CLN1/PPT1,
CLNS protein, mutated to restrict its localization to the ER, CLN2/TPP1, CLN6 and CLNS8 (Lyly et al., 2009). Studies
is expressed in healthy cells, it is shown to colocalize with using TAM-MS combined with bioinformatics SAINT found
CLN3 in the ER (Lebrun et al., 2009), the significance of that 18 of 31 CLNS5 interactors also interacted with CLN3,
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further supporting the functional overlap between the two
(Scifo et al., 2013).

4.5.5 | Interaction with CLN6

The CLN6 gene encodes a polytopic transmembrane pro-
tein, which localizes to the ER (Heine et al., 2007, 2004;
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FIGURE 8 Expression of CLN3 in
human tissues according to the NCBI GEO
GSE7307 data set

Open Access,

Mole et al., 2004). Mutations in the CLN6 gene have
been linked to autosomal dominant, adult-onset known
as Kuf's Type A disease. Patients with Kuf's Type A
disease present with progressive myoclonic epilepsy in
adulthood followed by dementia. Dissimilar to early-
onset CLN6 disease and most forms of NCL, Kuf's Type
A disease does not exhibit a retinal phenotype. To test

Expression for entrez 1201 (CLN3) in GSE7307_human

s |
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whether CLN3 and CLN6 proteins interact with one an-
other, lymphoblast lysates were immunoprecipitated with
an anti-CLN6/CLNS8 antibody and probed with a CLN3
targeted antibody. Indeed, a CLN3 band was detected,
suggesting CLN6 and CLN3 physically interact. These
results were confirmed by reciprocal experiments using
transfected COS-7 cells. Expression of CLN6 cDNA led
to some correction of growth defects in CLN3-deficient
cells, and CLN6 was also shown to colocalize with CLN3
in fibroblasts. Together, these results suggest that CLN3
and CLNG6 interact with one another (Persaud-Sawin et al.,
2007). Moreover, TAM-MS combined with bioinformatics
SAINT analysis further supports an interaction between
CLN3 and CLNG6; however, it is not clear whether this in-
teraction is direct (Scifo et al., 2013).

10xM

45.6 |

The CLNS gene encodes a transmembrane protein of un-
known function whose ER-Golgi intracellular location is
inferred from confocal immunofluorescence microscopy of
transiently transfected BHK cells (Lonka, Kyttild, Ranta,
Jalanko, & Lehesjoki, 2000). Two distinct mutations in
the CLNS gene have been shown to result in mutation-
specific phenotypes — juvenile-onset progressive epilepsy
with mental retardation (EPMR, (Hirvasniemi, Herrala, &
Leisti, 1995; Hirvasniemi & Karumo, 1994; Hirvasniemi,
Lang, Lehesjoki, & Leisti, 1994) and a more severe late var-
iant NCL with pathological similarities to CLN5-, CLN6-,
and CLN7-disease (Cannelli et al., 2006; Haltia, Herva,
Suopanki, Baumann, & Tyyneld, 2001; Herva, Tyyneld,

Interaction with CLN8
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Hirvasniemi, Syrjikallio-Ylitalo, & Haltia, 2000; Ranta,
Hirvasniemi, Herva, Haltia, & Lehesjoki, 2002; Ranta,
Savukoski, Santavuori, & Haltia, 2001; Ranta et al., 2004,
Vantaggiato et al., 2009). Expression of CLN3 cDNA in
CLN8-deficient mouse fibroblasts reduced the aberrant
cellular growth of these cells. Interaction of the two pro-
teins was observed by western blot analysis of lymphoblast
lysates immunoprecipitated with an anti-CLN8 antibody
and probed with an antibody targeted at CLN3. These
results were confirmed by reciprocal experiments using
transfected COS-7 cells suggesting that CLN3 and CLNS
proteins interact with one another (Persaud-Sawin et al.,
2007). Investigation of the cellular localization of CLNS8
showed co-localization of CLN3 and CLNS, which contra-
dicts earlier studies (Persaud-Sawin et al., 2007). However,
studies using TAM-MS combined with bioinformatics
SAINT also demonstrate an interaction between CLN3 and
CLNS&; however, it is not clear whether this interaction is
direct (Scifo et al., 2013).

4.5.7 | Lack of interaction with CLN4/
DNAJCS, CLN7, CLN10/CTSD, CLN11/GRN,
CLN12/ATP13A2/PARKY, CLN13/Cathepsin
F, CLN14/KCTD7

No direct interactions between CLN3 and CLN4, CLN7,
and CLN10-14 gene products have been reported, although
not all potential interactions have been explored and sin-
gle-experiment negative results may not be definitive.
Moreover, it must also be considered that experimental ap-
proaches that solely interrogate direct interaction do not
preclude CLN3 and the other gene products from contrib-
uting to the same cellular pathways or loosely associating
in a complex.
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4.5.8 | Lack of interaction with subunit
c of mitochondrial ATP synthase; the major
component of characteristic intracellular
storage material build-up

The accumulation of subunit ¢ in CLN3 disease (Johnson
et al., 1995; Westlake, Jolly, Bayliss, & Palmer, 1995)
raises the possibility that CLN3 may be involved in pro-
cessing or degrading subunit ¢, which could potentially be
mediated by direct physical interaction. Using the Y2H,
investigators screened fragments of the CLN3 peptide
against a human fetal brain library yet failed to demon-
strate a direct interaction between CLN3 and subunit ¢ of
mitochondrial ATP synthase (Leung, Greene, Munroe, &
Mole, 2001).

4.6 | Non-bona-fide CLN3 interactors

In addition to bona-fide interactors, several other proteins
have been found to bind CLN3 in vitro using the Cytotrap
Y2H system. The original Y2H systems required fusion
proteins to be expressed in the nucleus and were thus were
not suitable for transmembrane proteins like CLN3. With
Cytotrap, instead, the interaction occurs in the cytoplasm
with the reporter system associated with the plasma mem-
brane. While this technology is very useful, its use of over-
expressed fusion proteins may create artificial conditions.
Therefore, subsequent experiments are needed to validate
findings where the only reported interaction between CLN3
and another protein of interest was as result of the use of this
method.

4.6.1 |

The C-terminal region of CLN3 has been found to interact
with myosin I1IB (Getty, Benedict, & Pearce, 2011). This
interaction was found by Y2H and confirmed by co-immu-
noprecipitation of overexpressed CLN3 and endogenous
myosin-IIB. Non-muscle myosin IIB interacts with adeno-
sine triphosphate and F-actin to promote cytoskeletal in-
tegrity and force generation for multiple cellular processes
such as cell migration, shape changes, adhesion dynam-
ics, endocytosis, exocytosis and autophagy (Heissler &
Manstein, 2013). In addition to the cellular functions listed,
myosin IIB has been shown to be important for numerous
neuron-specific cell functions such as polarization, den-
dritic spine morphology, growth-cone motility and presyn-
aptic vehicle trafficking. Even though the significance of
the interaction between CLN3 and myosin IIB has not been
fully elucidated, it stands to reason that CLN3 may act in
concert with myosin IIB to regulate cytoskeletal dynamics
and that the loss of CLN3 function could disrupt myosin
IIB activity.

Interaction with myosin IIB
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TABLE 7 CLN3 interactions with other NCLs

Primary and Neuronal

Gene Gene Product (protein) Protein description Location(s) References

CLNI Palmitoyl protein thioesterase  soluble enzyme Lysosomal Persaud-Sawin et al.
1, PPT1 (2007)

CLN2 Tripeptidyl peptidase 1, TPP1  soluble enzyme Lysosomal Vesa et al. (2002) and

Persaud-Sawin et al.
(2007)
CLN3 CLN3 transmembrane protein  transmembrane protein Late endosomal/Lysosomal, Storch et al. (2007)
synaptosomes, axons

CLN4/DNAJC5  Cysteine string proteina secretory vesicle protein

CLNS Ceroid-lipofuscinosis neu- soluble (non) enzyme ER, Lysosomal, neurites Lyly et al. (2009)
ronal protein 5 glycoprotein

CLN6 Ceroid-lipofuscinosis neu- transmembrane protein Endoplasmic Reticulum Persaud-Sawin et al.
ronal protein 6 (2007)

CLN7 Major facilitator superfamily transmembrane protein, Late endosomal/Lysosomal
domain-containing protein 8 endolysosomal transporter

CLN8 unknown transmembrane transmembrane protein Endoplasmic Reticulum, ER-  Persaud-Sawin et al.
protein, ER, ER-Golgi inter- Golgi intermediate complex (2007)
mediate complex

CLN10/CTSD Cathepsin D soluble lysosomal enzyme Lysosomal

CLNI11/GRN Progranulin non enzyme; poorly

understood
CLNI12/ P-type ATPase non enzyme; poorly
ATPI13A2 understood

CLNI3 Cathepsin F soluble lysosomal enzyme

CLN14/KCTD7  Potassium channel tetrameri- probable transmembrane
zation domain-containing protein voltage-gated po-
protein 7 tassium channel complex

. . . nd RNA pr ing (Luz I, mes, Machado-Santelli
4.6.2 | Interaction with Shwachman-Bodian "¢ processing (Luz, Georg, Gomes, Machado-Santells,

Diamond Syndrome (SBDS) protein

To determine which proteins interact with CLN3, investiga-
tors screened fragments of the CLN3 peptide against a human
fetal brain library using a cytotrap Y2H system (Vitiello et
al., 2010). The C-terminal fragment of CLN3, predicted to
be cytosolic, was found to interact with the N-terminus of
Schwachman-Bodian-Diamond-syndrome (SBDS) protein.
These results were confirmed by co-immunoprecipitation
and co-localization studies in NIH/3T3 cells with C-termi-
nal c-myc and V5 tags (Vitiello et al., 2010). The interac-
tion between CLN3 and SBDS is evolutionarily conserved
since Sdopl and Btnlp, the yeast homologs of SBDS and
CLN3, respectively, have been found to interact with one an-
other. Loss of SBDS protein results in Shwachman-Bodian
Diamond syndrome, an autosomal recessively-inherited
neutropenia syndrome characterized by bone marrow dys-
function and associated cumulative risk of aplastic anemia
progressing to myelodysplastic syndrome and acute myeloid
leukemia (Donadieu et al., 2005). Previous studies on Sdolp
revealed that this protein is involved in ribosomal biogenesis

& Oliveira, 2009). More recently, SBDS has been found to
regulate the expression of C/EBPalpha and C/EBPbeta, which
are critical transcription factors for myelomonocytic lineage
commitment. In particular, SBDS patients have reduced C/
EBPbeta-LIP levels (In et al., 2016). Defective expression of
these factors may affect myeloid cell proliferation and dif-
ferentiation, driving neutropenia which is the most prominent
hallmark in almost all SBDS patients.

4.6.3 | Interaction with B-fodrin and Na+-
K+-ATPase complex

To determine which proteins interact with CLN3 and
could therefore, provide clues as to its function, investiga-
tors screened fragments of the CLN3 peptide (N1-40 and
N232-280), both predicted to be cytoplasmic, with a LacZ/
beta-galactosidase Y2H system. Interactions were subse-
quently confirmed by co-immunoprecipitation by overex-
pressing the full-length CLN3 protein in COS1 cells and
by using CLN3 antibodies. The results showed that full-
length CLN3 interacts with cytoskeletal protein p-fodrin
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(B-II-spectrin) and its plasma/endosomal interaction part-
ner Na+, K4+ ATPase, a heteromeric protein with varying
a-f isoform combinations (Uusi-Rauva et al., 2008). Beta-
fodrin, known also as non-erythroid spectrin, is concentrated
in the synaptosome fraction and is associated with synaptic
membranes (Sobue, Kanda, & Kakiuchi, 1982). In erythro-
cyte membrane skeleton, beta fodrin has been found in het-
erotetrameric complexes with alpha fodrin (two alpha and
two beta chains), which drive the formation of polygonal
network linked to actin filaments. This network is located
at the plasma membrane bilayer by interaction with an-
kyrin protein and the cytoplasmic domain of the Na+, K+,
ATPase and it is involved in protein stability and polariza-
tion (Bennett & Baines, 2001). Na+, K+, ATPase is an ubiq-
uitous heterodimeric transmembrane enzyme composed of
varying alpha and beta isoform combinations that transport
Na+ and K+ across the plasma membrane by hydrolysis of
ATP (Lingrel et al., 1994). Follow-up studies revealed that
the ion pumping activity of Na+, K+ ATPase is unchanged
in CLN3 disease mouse models created by a homozygous
deletion of exons 1-6 of CLN3 bred onto a C57/BL genetic
background. However, the immunostaining pattern of fodrin
appeared abnormal in CLN3 patient fibroblasts and Cln3”
mouse brains suggesting disturbances in the fodrin cy-
toskeleton. Furthermore, the basal subcellular distribution
as well as ouabain-induced endocytosis of neuron-specific
Na+, K+ ATPase were markedly affected in Cln3”" mouse
primary neurons. Studies using TAM-MS combined with
bioinformatics SAINT confirm a direct interaction between
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CLN3, B-fodrin and the Na+, K+ ATPase complex (Scifo
et al., 2013; Uusi-Rauva et al., 2008). However, the inter-
action between fodrin and Na+, K+, ATPase in CLN3™
mouse models has not been evaluated. Further studies are
needed to confirm the role of CLN3 protein in the regulation
of plasma membrane-fordin cytoskeleton and, consequently,
the plasma membrane association of Na+, K+ ATPase.

4.6.4 | Human Autophagy Interacting
Network (AIN)

However, specific aspects of the autophagy pathway have
been studied extensively, less is known about the overall
architecture and associated regulation of the autophagy in-
teraction network (AIN). To generate a framework for the
human AIN that could be followed up by direct mechanis-
tic and other functional studies, Behrends and colleagues
performed a systematic proteomic analysis by retrovirally
expressing CLN3 and 31 additional proteins as Flag-HA-fu-
sion proteins in 293T cells, isolating a-HA immune com-
plexes by mass spectrometry and processing the complexes
using Comparative Proteomics Analysis Software Suite
(CompASS©) to identify high-confidence candidate in-
teraction proteins (HCIPs). TAM-MS and combined with
bioinformatics SAINT yielded 58 CLN3 interacting part-
ners including IMMT, GCNILI1, PRKDC, XPO1, CPTI1A,
HSD17B12, RPN2, PHGDH, COX15, SLC25A11, DDOST,
AUP1, KIAA0368, SLC25A22, SLC25A10, and NUP205
(Scifo et al., 2013). The significance of computer-generated
results is unknown and needs to be followed up with direct
mechanistic and functional studies (Figure 11).

5 | CONCLUSION

The discovery of juvenile Batten disease occurred more than
100 years ago (Stengel, 1826). The responsible genetic dys-
function was discovered more than 20 years ago (International
Batten Disease Consortium, 1995). Since that time, over 500
unique discoveries have been made relevant to the CLN3
gene, its protein, regulation or dysfunction in its absence.
Despite all of this, the function of CLN3 protein remains elu-
sive. The authors hope that the historical research findings
presented here will contribute to determining the function of
the CLN3 protein and exactly why, CLN3 gene defects ad-
versely affect endosomal-lysosomal homeostasis, proteome,
lipidome, trafficking, maturation, and recycling activities
(anHaack et al., 2011; Appu et al., 2019; Burkovetskaya et
al., 2014; Cao et al., 2006; Chandrachud et al., 2015; Codlin
et al., 2008; Codlin & Mole, 2009; Gachet et al., 2005;
Golabek et al., 2000; Holopainen, Saarikoski, Kinnunen, &
Jarvela, 2001; Fossale et al., 2004; Kama et al., 2011; Luiro
et al., 2004; Metcalf, Calvi, Seaman, Mitchison, & Cutler,
2008; Schmidtke et al., 2019; Stein et al., 2010; Tecedor et
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al., 2013; Vidal-Donet, Céarcel-Trullols, Casanova, Aguado,
& Knecht, 2013). Why does CLN3 protein deficiency impact
protein palmitoylation? How then does palmitoylated revers-
ible trafficking and localization of proteins to cell membranes
contribute to cell death (Narayan et al., 2006, 2008)? Are the
defects found in the endoplasmic reticulum, trans-golgi net-
work, and mitochondria of CLN3-deficient cells primary or
secondary to disease pathogenesis (Fossale et al., 2004; Luiro
et al., 2006; Metcalf et al., 2008)? If the breakdown in intra-
cellular communication between membranous compartments
of the endosomal-lysosomal system and other organelles
were resolved in glia, would neuronal survivability improve
(Parviainen et al, 2017)? Which defects lead to the selective
vulnerability of neurons in disease? Overexpression of CLN3
protein has been reported in several primary cancerous tis-
sues and cell lines (Dhar et al., 2002; Makoukji et al., 2015;
Mao et al., 2015; Narayan et al., 2006; Oltulu et al., 2019;
Renetal.,2016; Rylovaetal.,2002; Xu et al., 2019; Zhang et
al., 2008; Zhu et al., 2014). Are the anti-apoptotic properties
of CLN3 protein responsible for promising preclinical CLN3
gene therapy reports or does gene therapy affect one or more
of the deficient processes listed above (Bosch et al., 2016;
Lane, Jolly, Schmechel, Alroy, & Boustany, 1996).
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APPENDIX
ABBREVIATIONS
1. aa: amino acid
2. AIN: (Human) Autophagy Interacting Network
3. ATP: Adenosine triphosphate
4. BHK: baby hamster kidney
5. bp: base pair
6. CLNI: ceroid-lipofuscinosis, neuronal 1
7. CLN2: ceroid-lipofuscinosis, neuronal 2
8. CLN3: ceroid-lipofuscinosis, neuronal 3
9. CLN4: ceroid-lipofuscinosis, neuronal 4
10. CLNS5: ceroid-lipofuscinosis, neuronal 5
11. CLNG6: ceroid-lipofuscinosis, neuronal 6
12.  CLNT7: ceroid-lipofuscinosis, neuronal 7
13.  CLNB8: ceroid-lipofuscinosis, neuronal 8
14. DREAM: downstream regulatory element antagonist
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28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.
44.
45.
46.

47.

EEA1: early endosome antigen 1

EPMR: Progressive Epilepsy with Mental Retardation
GFP: Green Flourescent Protein

GST: Glutathione S Transferase

GTP: guanosine triphosphate

hp: haptoglobin

INCL: infantile neuronal ceroid lipofuscinosis

JNCL: juvenile Neuronal Ceroid Lipofuscinosis

kb: kilobase

kDa: kilodalton

LINCL: late infantile Neuronal Ceroid Lipofuscinosis
MG6P: mannose 6 phosphate

MEFS: Major Facilitator Superfamily

MSD: Membrane Spanning Domain

NCBI: National Center for Biotechnology Information
NLM: National Library of Medicine

NRK: Normal Rat Kidney

PDI: protein disulfide isomerase

PKA: protein kinase A

PKG: protein kinase G

PPT1: palmitoyl-protein thioesterase 1

PTM: post-translational modification

RFU: relative fluorescent units

S. cerevisiae: schizosaccharomyces cerevisae

S. pombe: schizosaccharomyces pombe

SBDS: Shwachman-Bodian Diamond Syndrome
SNP: Single Nucleotide Polymorphism

TAM-MS: Tandem Affinity Purification coupled with
Mass Spectrometry

TPP1: Tripeptidyl Peptidase 1

TSS: Transcription Start Site

UTR: Untranslated Region

VvLINCL fin: Finnish variant late infantile form of
Neuronal Ceroid Lipofuscinosis

Y2H: yeast-2-hybrid
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