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Abstract 
Background Neuronal ceroid lipofuscinosis is a 
group of neurodegenerative disorders with varying 
visual dysfunction. CLN3 is a subtype which com-
monly presents with visual decline. Visual symptom-
atology can be indistinct making early diagnosis dif-
ficult. This study reports ocular biomarkers of CLN3 
patients to assist clinicians in early diagnosis, disease 
monitoring, and future therapy.
Methods Retrospective review of 5 confirmed CLN3 
patients in our eye clinic. Best corrected visual acu-
ity (BCVA), electroretinogram (ERG), ultra-widefield 
(UWF) fundus photography and fundus autofluo-
rescence (FAF), and optical coherence tomography 
(OCT) studies were undertaken.

Results Five unrelated children, 4 females and 1 
male, with median age of 6.2 years (4.6–11.7) at first 
assessment were investigated at the clinic from 2016 
to 2021. Four homozygous and one heterozygous 
pathogenic CLN3 variants were found. Best corrected 
visual acuities (BCVAs) ranged from 0.18 to 0.88 
logMAR at first presentation. Electronegative ERGs 
were identified in all patients. Bull’s eye maculopa-
thies found in all patients. Hyper-autofluorescence 
ring surrounding hypo-autofluorescence fovea on 
FAF was found. Foveal ellipsoid zone (EZ) disrup-
tions were found in all patients with additional inner 
and outer retinal microcystic changes in one patient. 
Neurological problems noted included autism, 
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anxiety, motor dyspraxia, behavioural issue, and psy-
chomotor regression.
Conclusions CLN3 patients presented at median age 
6.2 years with visual decline. Early onset maculopa-
thy with an electronegative ERG and variable cogni-
tive and motor decline should prompt further inves-
tigations including neuropaediatric evaluation and 
genetic assessment for CLN3 disease. The structural 
parameters such as EZ and FAF will facilitate ocular 
monitoring.

Keywords Batten · CLN3 · Neuronal ceroid 
lipofuscinoses · Lysosomal storage disorders

Introduction

The neuronal ceroid lipofuscinoses (NCLs) are a 
group of autosomal recessive lysosomal storage dis-
orders (LSD) and together are one of the most fre-
quent causes of neurodegenerative disease in chil-
dren. The incidence of NCL ranges from 0.1 to 8 per 
100,000 live births [1–7]. Isolated retinal CLN3 dis-
ease accounted for 1% of all inherited retinal disease 
(IRD) in a French cohort [8]. There are a number of 
recent publications reporting isolated retinal findings 
in patients with CLN3 mutations [9–11]. Analysis of 
these reports suggests that it is more likely that the 
1 kb homozygous deletion is associated with the syn-
dromic CLN3 phenotype, while compound heterozy-
gous mutations are more likely to be found in the iso-
lated retinal degeneration phenotype. NCL patients 
experience myoclonic seizures, progressive visual 
deterioration, cognitive dysfunction, motor decline, 
and premature death [11–13]. These clinical features 
often present asynchronously, making diagnosis dif-
ficult and often delayed. Classically, NCL was classi-
fied based on age at onset (congenital, infantile, late 
infantile, juvenile, and adult). To date, 13 causative 
genes have been identified (CLN1 to 8 and CLN10 to 
14) with CLN3 being the most prevalent cause [11, 
12, 14].

CLN3 disease was formerly known as ‘juvenile 
neuronal ceroid lipofuscinosis’ (JNCL) and can ini-
tially present as with isolated visual symptoms or 
with progressive neurological dysfunction. Wang 
et  al. reported that the CLN3 associated visual 
symptoms can exhibit rod-cone or cone-rod dystro-
phy (RCD or CRD) phenotype [15]. In that study, 

5 patients from a total of 123 retinal degeneration 
patients had a CLN3 mutation with 4 RCD and 1 
CRD phenotype [15]. Data from our previous study 
showed that all CLN3 patients in our study centre had 
an electronegative ERG, suggesting its importance in 
this particular diagnosis [16].

CLN3 is a lysosomal membrane protein involved 
with glycosylation and phosphorylation at several 
sites, with localization to synaptic compartments in 
neuronal cells. This localization might suggest a dis-
tinctive role of the CLN3 protein within neurons that 
makes the central nervous system (CNS) susceptible 
in this disease [17].

Understanding of the ophthalmological findings 
is crucial to early diagnosis of CLN3-related disease, 
as these commonly precede the development of neu-
rological signs, with retinal examination using mul-
timodal imaging frequently identifying bull’s eye 
maculopathy, optic disc pallor, and/or bone spicule 
formation. These structural findings overlap with 
Stargardt disease or retinitis pigmentosa (RP) [18, 
19]. Where CLN3 disease is a differential diagnosis, 
it is critical that a full-field electroretinogram (ffERG) 
is performed, as this may demonstrate an electronega-
tive ERG (b:a ratio ≤ 1 in dark adapted 3.0 or 12.0 
ERG) [16, 18, 20–22]. Other classical ocular features 
of CLN3 disease may then be elucidated on ophthal-
mic examination, alerting the clinician to the possi-
bility of this disorder and the need for neurogenetic 
review.

Novel therapies for CLN3-related disease are cur-
rently emerging into clinical trials. Early diagnosis is 
therefore vital to increase the possibility of adminis-
tering a novel CLN3 disease therapy at a time when 
maximal benefit might be achieved. Ocular biomark-
ers become challenging to obtain as neurological 
deterioration progress. The purpose of this study is to 
report ocular findings of CLN3 disease patients to aid 
early diagnosis, enable disease monitoring, and assist 
further trials of novel CLN3 therapies.

Methods

Retrospective evaluation of 5 confirmed CLN3 dis-
ease patients in our tertiary referral clinic were 
included in this study. They were referred for oph-
thalmic review and subsequently underwent single 
genetic testing for CLN3 disease. The age when the 
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patients were referred and the age of ocular and neu-
rological onset were recorded. Age of ocular and neu-
rological onset was determined by the earliest time 
point of reported ocular and neurological symptoms. 
Best corrected visual acuity (BCVA), retinal imaging, 
spectral domain-optical coherence tomography (SD-
OCT), and full-field electroretinogram (ffERG) data 
were reviewed at baseline (BL) and follow-up (FU). 
BCVA was measured using a logarithm of mini-
mum angle of resolution (logMAR). Patients with 
BCVA worse than 1.0 logMAR (6/60 on Snellen) 
were examined using Sheridan-Gardiner single letter 
and if failed this continued to finger counting, hand 
movement, and perception of light. BCVA values 
were then converted to logMAR equivalent values as 
described by Lange et al. [23, 24].

The study followed the tenets of the Declaration 
of Helsinki and was approved by the local ethical 
committee. Disease severity was calculated using the 
recently described Hamburg CLN3 Ophthalmic Rat-
ing Scale [25]. This scale consists of visual acuity, 
fundus, and OCT score with maximum points of 14. 
The scale then is translated into CLN3 grades of grade 
0 (unaffected) = 14 points, grade 1 (affected) = 10–13 
points, grade 2 (severely affected) = 5–9 points, and 
grade 3 (end stage) = 0–4 points.

Retinal imaging

Ultra-widefield (UWF) fundus pseudocolour imaging 
and UWF-fundus autofluorescence (UWF-FAF) were 
performed using the Optos system (Optos plc, Dun-
fermline, UK).

Spectral domain-optical coherence tomography 
(SD-OCT)

SD-OCT imaging was acquired using the Heidelberg 
Spectralis (Heidelberg Engineering, Germany) and 
Zeiss Cirrus (Carl Zeiss Meditec, Dublin, CA, USA). 
Retinal layers and central macular thickness were 
examined. Bruch membrane and internal limiting 
membrane markers were manually adjusted to ensure 
precision in measuring retinal thickness. Central sub-
field thickness (CST) and central macular thickness 
(CMT) are both commonly used terms in ophthal-
mology to describe the thickness of the central ret-
ina. Central subfield thickness (CST), also known as 
foveal thickness, was defined as the average thickness 

of the central 1 mm subfield centred at the fovea on 
ETDRS grid [26].

Electrophysiology

Testing strategies included pattern ERG (pERG) and 
full-field ERG (ffERG) using Espion (Diagnosys, 
Lowell, Massachusetts USA). Visual electrophysiol-
ogy was performed according to International Soci-
ety for Clinical Electrophysiology of Vision (ISCEV) 
standards [27–29]. Gold foil; Dawson, Trick, and 
Litzkow (DTL); or skin electrodes were used depend-
ing on the level of patient’s cooperation. Paediat-
ric non-standard abbreviated ERG protocol was 
done using a modified Great Ormond Street Hospi-
tal (GOSH) protocol utilizing handheld Grass (Gr) 
strobe for the most uncooperative patient [28, 30]. 
Pulse period 2 (2/s) and flicker Gr intensity 1 (Gr1) 
were used instead of 3/s and Gr4, respectively. The 
b:a wave ratio was calculated from dark adapted (DA) 
ffERG 3.0 or 12.0 with a value of ≤ 1.0 defined as an 
electronegative ERG [16, 31].

Results

Five unrelated children with biallelic CLN3 patho-
genic variants were included in the study, 4 females 
and 1 male with median age at referral of 6.2 
(4.6–11.7) years (yrs). Median age at ocular onset was 
5.1 (2.6–11.6) yrs with P1 who had the earliest ocular 
onset while P5 the latest. Two patients (P1 and P2) 
had FU data. Hamburg CLN3 ophthalmic rating scale 
at BL was ranging from 9 (affected) to 13 (severely 
affected) (Table  1). P1 progressed from affected to 
end stage while P2 from affected to severely affected.

Genetics and pathology investigations

The cohort in this study consisted of 4 patients with 
a previously reported homozygous pathogenic CLN3 
variant (P1-P4) and one patient with compound hete-
rozygous CLN3 variants (P5) (Table 1). The recurrent 
pathogenic variant CLN3: c.461-280_677 + 382del 
was identified in all 5 patients investigated. Only P3 
underwent peripheral blood film microscopy and 
electron microscopy both with positive result of 
vacuolated lymphocytes and fingerprint inclusions, 
respectively.
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BCVA

BCVAs ranged from 0.18 to 0.88 logMAR at BL 
with follow-up (FU) obtainable from 2 patients (P1 
and P2) (Table 1). These 2 patients (4 eyes) had an 
average of 0.75 (0.41) logMAR loss per year during 
an average of 3.9 (2) years of FU and worst even-
tual FU BCVA (2.7 logMAR). P1 had earlier ocu-
lar onset than P2 and thus had the worst BCVA (2.7 
logMAR) at an earlier age (6.8 vs 11.5 yrs) (Fig. 1). 
At the point of similar age (11–12 yrs), P2 had far 
worse BCVA than P3 (2.7 logMAR vs 0.5&0.56 
logMAR) (Fig. 1).

Retinal imaging

Assessment of UWF-fundus pseudocolour appear-
ance and UWF-FAF showed a consistent bull’s eye 
macular appearance in all patients (Fig.  2). Addi-
tionally, P5 showed macular striae. Progress of 
yellow-orange macular appearance, retinal atrophy, 
and vessel rarefication can be observed in P1 and P2 
(Fig.  3). The FAF pattern consisted of hyper-auto-
fluorescence (hyperAF) rings surrounding a hypo-
autofluorescence (hypoAF) fovea (Fig. 2). This per-
ifoveal hyperAF ring became more apparent at first 
FAF FU in P1 and P2. On the second FU, the ring 
of hyperAF had disappeared and hypoAF had devel-
oped outside the vascular arcade corresponding to 
the retinal atrophy seen on fundus image (Fig.  3). 

Right and left eyes of the patients showed similar 
phenotype.

Spectral domain-optical coherence tomography 
(SD-OCT)

Foveal ellipsoid zone (EZ) disruption was found in 
each patient. Those with the largest central EZ dis-
ruption had the poorest eventual BCVA (P1&2) 
(Table 1). FU OCT was available in P1 and P2 using 
the Cirrus device and showed progression of EZ 
loss and signal hypertransmission into the choroid 
(Fig.  3). Macular IR appearances again showed a 
bull’s eye maculopathy for P1-P5 and also macular 
striae for P5. CSTs were ranging from 99 to 145 μm 
(Table  1). In the compound heterozygous CLN3 
patient (P5), we identified macular inner and outer 
retinal microcystic changes in addition to the macular 
atrophy (Fig. 2). There is a concordance in SD-OCT 
result of each patient.

Electrophysiology

P1, P2, and P4 used skin electrode, while P3 and P5 
used DTL and gold foil electrode, respectively. P4 
underwent paediatric non-standard abbreviated ERG 
protocol with skin electrode. The electrophysiology 
results were as follows. The pERG recordings were 
noisy and almost undetectable for the 15-degree stim-
ulus field. The 30-degree field had identifiable traces 
but greatly reduced. The ffERG revealed an over-
all electronegative ERG waveform in addition to the 

Fig. 1  BCVA relationship 
with age. BCVA was plot-
ted against age for patients 
P1 & P2. The BCVA trend 
deteriorated with increasing 
age. P1 eyes are shown in 
circle. P2 eyes are shown 
in square. Right eyes are 
presented in black colour, 
while left eyes in blue col-
our. BCVA Best corrected 
visual acuity
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Fig. 2  Multimodal retinal 
imaging for all patients. 
Right eye UWF-fundus 
pseudocolour photograph, 
UWF-FAF, and macular 
SD-OCT for P1-P5. Double 
black arrows indicate the 
margin of bull’s eye macu-
lopathy (BEM). (P1-A) 
BEM and macular yellow-
orange appearance found in 
P1. (P1-B) HyperAF ring 
surrounding hypoAF fovea. 
(P1-C) EZ loss on fovea. 
(P2-A) BEM was found in 
P2. (P2-B) HyperAF ring 
surrounding hypoAF fovea. 
(P2-C) EZ loss on fovea. 
(P3-A) BEM, macular 
yellow-orange appearance, 
vessel rarefication, retinal 
atrophy outside vascular 
arcade found in P3. (P3-B) 
HyperAF ring surrounding 
hypoAF fovea, hypoAF 
corresponding to retinal 
atrophy. (P3-C) EZ loss on 
fovea. (P4-A) BEM and 
vessel rarefication found in 
P4. Insert image of enlarged 
macula shows BEM. (P4-B) 
HyperAF ring surrounding 
hypoAF fovea. (P4-C) EZ 
loss on fovea. (P5-A) BEM, 
macular striae, macular 
yellow-orange appearance, 
vessel rarefication found 
in P5. Insert image shows 
clearer macular striae. 
(P5-B) HyperAF ring sur-
rounding hypoAF fovea. 
(P5-C) Schitic changes 
on macula and EZ loss on 
fovea. (N-A,B,C) Normal 
control showed normal 
fundus pseudocolour pho-
tograph, normal UWF-FAF 
with foveal reduction of 
AF, and normal SD-OCT 
with normal thickness and 
distinct lamination. AF 
Autofluorescence, BEM 
Bull’s eye maculopathy, EZ 
ellipsoid zone, FAF fundus 
autofluorescence, SD-OCT 
spectral domain-optical 
coherence tomography, 
UWF ultra-wide field



249Doc Ophthalmol (2023) 146:241–256 

1 3
Vol.: (0123456789)

reduced dark adapted (DA) and light adapted (LA) 
responses. P2 had ERG twice with 1.1-year interval. 
The first one showed presence of rod function and 
undetectable cone response, while the second one 
showed worsening of rod function (Table 1) (Fig. 4).

Associated neurobehavioural issues

Neurobehavioural issues were documented in 4 
patients (P1-4) at the time of presentation. The oldest 
patient (P5) did not have any systemic symptoms at 
presentation or the last ocular follow-up. Associated 
symptoms included autism spectrum features in P1, 
significant anxiety and speech delay in P2, behav-
ioural issues in P3, and motor dyspraxia and behav-
ioural issues (biting friends) in P4. In two patients 
(P2 and P4) the neurological abnormalities appeared 

after the visual symptoms, while P3 had onset before 
any eye complaint.

Discussion

CLN3-related disease commonly presents with early 
onset visual decline and variable neurodegeneration 
in childhood [12]. The visual decline in children with 
CLN3 disease is frequently more rapid than other 
early onset maculopathies such as Stargardt disease 
[32].

The CLN3 protein has a crucial role within neu-
rons specifically in the synaptic space, with animal 
models of CLN3 disease showing this condition is 
primarily a disease of the inner retina, with secondary 
changes in the outer retina [17, 20]. CLN3 has a role 
in the transfer of the palmitoyl-protein thioesterases-1 

Fig. 3  Multimodal retinal imaging follow-up for selected 
patients. The left eye multimodal retinal imaging was selected 
to illustrate change over time. UWF-fundus pseudocolour pho-
tography, UWF-FAF, and SD-OCT follow-up of P1 and P2 are 
shown. (P1-A) Bull’s eye maculopathy (BEM) and macular 
yellow-orange appearance were found in P1 at 4.6 yrs. (P1-
D) Macular yellow-orange appearance became more apparent 
at 5.3yrs. (P1-F) Macular yellow-orange appearance cover-
ing macula and retinal atrophy outside vascular arcade at 6.8 
yrs. (P1-B) HyperAF ring surrounding hypoAF fovea at 4.6 
yrs. (P1-E) More apparent perifoveal hyperAF ring at 5.3 yrs. 
(P1-G) Perifoveal hyperAF ring disappearance, hypoAF out-
side vascular arcade corresponding to retinal atrophy at 6.8 
yrs. (P2-A) BEM was found in P2 at 5.9 yrs. (P2-D) Macu-
lar yellow-orange appearance started to bed found at 7 yrs. 
(P2-F) BEM, macular yellow-orange appearance, vessel rare-

fication, retinal atrophy on inferonasal area at 9.4 yrs. (P2-B) 
HyperAF ring surrounding hypoAF fovea at 5.9 yrs. (P2-E) 
More apparent perifoveal hyperAF ring at 7 yrs. (P2-G) Peri-
foveal hyperAF ring disappearance, replaced by hypoAF ring. 
HypoAF on inferonasal area corresponding to retinal atrophy 
at 9.4 yrs BL SD-OCT was taken using Heidelberg, while FU 
SD-OCT was taken using Cirrus device. (P1-C)(P2-C) BL 
SD-OCT of P1 and P2 showed disruption of foveal EZ. (P1-H)
(P2-H) FU SD-OCT of P1 and P2 showed progressed disap-
pearance of EZ. Signal hypertransmission into choroid (yel-
low arrow) was present in both FU SD-OCT. AF Autofluores-
cence, BEM Bull’s eye maculopathy, BL baseline, EZ ellipsoid 
zone, FAF fundus autofluorescence, FU follow-up, SD-OCT 
spectral domain-optical coherence tomography, UWF ultra-
wide field
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(Ppt1) protein, and deficiencies in this protein have 
been associated with inner nuclear layer damage, 
particularly cone bipolar cells, and further damaging 

the cone photoreceptor cells over the rod [33, 34]. 
This pathophysiology assists in the understanding of 
the generation of the electronegative ERG, the one 
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feature that was consistent across our cohort and sim-
ilar to previous studies [18, 21, 22, 32], reflecting the 
inner retinal defects. There was significant but varia-
ble reduction in both rod and cone responses as found 
in other studies [9, 18, 21, 35]. The ffERG of P2 in 2 
different time points showed early DA ERG preser-
vation associated with an undetectable LA ERG, fur-
ther reflecting initial cone involvement of this disease 
and thus resembling CRD [33, 34]. In contrast, other 
studies in CLN3 studies in cases without neurologi-
cal phenotype showed that DA ERG is more affected 
that LA ERG resembling RCD [8, 9, 32, 35]. These 
contrasting phenotypes have electronegative ERG or 
at least reduced b:a wave ratio as the consistent com-
mon finding reflecting inner retina disturbance.

We found the most common pathogenic CLN3 
variant of c.461-280_677 + 382del in all 5 patients 
[36–38]. In 4 patients (P1-P4), this variant was 
homozygous. In P5 we identified this common patho-
genic variant in compound with a novel missense var-
iant, c.680A > G p.(Tyr227Cys). This variant is likely 
pathogenic according to ACMG classification [39].

Batten disease is a rare paediatric degenerative 
disorder, and diagnosis may be delayed due to vari-
able presenting features [18, 21, 40]. The applica-
tion of electrophysiology combined with multimodal 

imaging in patients with reduced vision provides an 
opportunity of early recognition of this disease. The 
findings of an electronegative ERG and biomarkers 
of a bull’s eye maculopathy facilitate directed genetic 
testing. The increasing availability of genetic testing 
will supplant the use of peripheral blood film micros-
copy (vacuolated lymphocytes) and electron micros-
copy (storage lysosomal inclusions) as previously 
proposed by other authors [18].

Ophthalmic follow-up is challenging for these 
patients due to poor cooperation as the degenerative 
disorder progresses. In our study two patients had 
reliable measurements to enable comparison with BL. 
In these two patients (4 eyes) the rate of change was a 
loss of 0.75 (0.41) logMAR letters/year during 3.9 (2) 
years of FU. It is a slower rate of deterioration with 
longer FU compared to Wright et al. study with 2.02 
(3.78) logMAR letters/year during 0.9 (0.5) years FU 
[18]. These results provide further evidence to the 
variability in disease progression in this disorder. The 
latest-onset patient (P5) with no documented neuro-
logical findings had the best BCVA, while the early 
onset patients (P1&2) had the worst BCVA at FU. 
P5 was the only patient with a compound heterozy-
gous mutation. These findings were in concordance 
to a previous non-syndromic CLN3 study that found 
absence of visual loss in the late onset patients and 
mild visual loss in their early onset patients [9]. Later 
onset of the disease appears to be correlated with bet-
ter BCVA. A vast majority of CLN3 disease patients 
(± 80%) present with vision impairment [41, 42]. A 
contribution to the visual decline has been postulated 
to arise from additional damage to the lateral genicu-
late nucleus and/or primary visual cortex [43].

Bull’s eye maculopathy is the most consistent and 
prominent macular finding in this patient cohort as 
also found in previous studies [18, 21, 44]. Other fun-
dus findings reported in CLN3 disease include optic 
disc pallor, macular atrophy, macular striae, macular 
oedema, retinal pigment epithelium (RPE) atrophy, 
RPE granularity, bone spicule formation, epiretinal 
membrane, arteriolar attenuation, and even a Coats-
like reaction [9, 18, 40, 45]. The fundus variabil-
ity may lead to misdiagnosis of Stargardt disease or 
retinitis pigmentosa, demonstrating the importance of 
electrophysiology investigations.

UWF-FAF findings highlighted the central hypo-
autofluorescence (hypoAF) surrounded by a ring of 
hyperAF found in our patients. Through 2.2–3.5 years 

Fig. 4  Full-field ERGs and pattern ERG recordings. The full-
field ERGs were recorded according to ISCEV protocols for 
paediatric ERG and in one case the non-standard abbreviated 
ERG protocol was used. P1 and P2 were examined using skin 
electrodes, P3 used DTL electrodes, P4 underwent a paediatric 
non-standard abbreviated ERG protocol using skin electrode, 
and P5 used gold foil electrodes. P4 ERG was performed using 
a modified Great Ormond Street Hospital (GOSH) protocol as 
described in the methods. All patients showed severely reduced 
or undetectable DA 0.01 response. All patients excluding P4 
showed a reduced b:a wave ratio (electronegative) for DA 3.0 
and DA 12.0. P4 had a very noisy recordings, and there is a 
suggestion of a reduced b wave. The LA 30  Hz and LA 3.0 
were significantly reduced for P1-P2. P4’s responses were 
noisy but also appeared reduced. Patients P3 and P5 were at 
the lower of the normal range. In patients P1 to P4, the pERG 
30  deg p50 amplitude was almost undetectable. Patient P5 
showed an identifiable waveform, but the p50 amplitude was 
reduced. Despite P4 having poor compliance and coopera-
tion during the testing which resulted in noisy recordings, the 
combination of the potential electronegative scotopic ERG 
and a significantly reduced LA 30  Hz and LA 3.0 raised the 
possibility of Batten disease as a potential diagnosis. DA Dark 
adapted, DTL Dawson, Trick, and Litzkow electrodes, ERG 
electroretinogram, ffERG full-field ERG, LA light adapted, 
pERG pattern ERG

◂
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of UWF-FAF follow-up in P1&P2, we found that the 
perifoveal hyperAF ring as found in previous CLN3 
study [18] became more apparent and eventually 
disappeared. Then hypoAF starts to emerge in the 
periphery corresponding to retinal atrophy [40]. As 
disease advances, the whole macular region shows 
generalised hypoAF [9, 18, 46]. Therefore, we sug-
gest that this specific change in UWF-FAF can be 
used as biomarker to monitor natural disease pro-
gression. A ring of hyperAF is a common finding in 
rod-cone dystrophies where the ring divides healthy 
central retina and disturbed peripheral retina [47, 48]. 
Our CLN3 cases initially show the reverse pattern 
with an abnormal central fovea region and preserved 
peripheral retina.

The disrupted foveal EZ on SD-OCTs (P1-P5) is 
consistent with a previous review [18] and supports 
the CRD phenotype reflected from ERG and UWF-
FAF findings in our cohort. In contrast, CLN3 cases 
with RCD phenotype had the predictably preserved 
foveal EZ while disrupted in the parafovea [8, 9]. In 
later stage, there is marked macular EZ disruption 
with difficulty identifying any remaining outer reti-
nal structures and choroidal signal hypertransmission 
reflecting RPE disturbance [18, 46, 49, 50]. Inner and 
outer retinal microcystic changes found in P5 were 
also found in previous reports of CLN1 and CLN3 
patients, indicating the involvement of both retinal 
layers [8, 9, 51]

The mechanism for retinal degeneration in CLN3 
disease is yet to be understood [43]. The bull’s eye 
maculopathy, early DA ERG preservation, pERG 
disturbance, and foveal EZ disruption in our study 
support the notion that this disease has centrifugal 
(central to peripheral) progression as also found by 
Preising et al. in their study [52]. This condition pri-
marily affects the inner retina with secondary defects 
in outer retina, as suggested in a mouse model where 
there were significant bipolar cell survival and pre-
served retinal function after gene therapy [20].

Four of our patients (P1-4) had neurological 
problems co-existing with their ocular symptoms, 
while the oldest patient (P5) did not have any sys-
temic symptoms at presentation or the last ocular 
follow-up. Reflected by our P5 case, electrophysi-
ology is the primary investigations in the event 
of a bull’s eye maculopathy in a child of this age. 
An electronegative ERG with bull’s eye macu-
lopathy should directly lead to investigation of a 

genetic referral even in the case without neurologi-
cal symptoms. Neurological onset is variable and 
may occur before, after, or concurrent with visual 
decline. Various neurological signs and symptoms 
have been reported, including: dementia, seizures, 
speech delay, mood fluctuations, difficult behaviour, 
balance, or memory changes, cognitive decline, 
sleep disturbances, feeding difficulties, clumsiness, 
and poor concentration [13, 18, 41] with seizure as 
the most common [13]. CLN3 has a variable phe-
notype as illustrated by those presenting with mild 
or delayed neurological defects ranging from 3-  to 
18-year interval between ocular and neurological 
onset [53–56], or no systemic features [9, 10, 15]. 
Ocular and neurological phenotypic variability also 
is frequently reported in those with the same muta-
tions [57–59]. Ocular phenotype variability includes 
RCD and CRD [15]. CLN3 literature implies that 
syndromic CLN3 disease (mostly homozygous 
variant) is characterized by CRD with childhood 
onset and rapid disease progression, while the iso-
lated retinal degeneration case (mostly compound 
heterozygous variant) is rather a RCD with later 
onset and slower progression [32]. However, geno-
type–phenotype correlation in CLN3 disease is not 
perfect and caution should be given in establishing 
the diagnosis [8].

Although there is no current definitive treatment 
for CLN3 disease, early diagnosis is important to give 
appropriate family counselling and establish support-
ive therapies at the earliest opportunity [20, 60–76]. 
In Australia there is Mackenzie’s mission a study 
investigating preconception for autosomal recessive 
disorder. CLN3 is one of the gene of 500 genes in 
the panel for both parents. Secondly, whole genome 
screening is being investigated as an expansion of the 
newborn screening programme to identify and enable 
early management of severe genetic diseases [77, 
78]. There are currently 3 active CLN3 clinical trials 
which have ophthalmic parameter measurement as 
an endpoint. These include intrathecal gene therapy 
AT-GTX-502 (NCT03770572), oral drug PLX-200/
gemfibrozil (NCT04637282), and oral drug Miglus-
tat 100  mg (NCT05174039) which give hope that 
disease-modifying therapies are emerging [79]. Those 
studies emphasize the importance of understanding 
the ocular biomarkers in CLN3 disease natural his-
tory. Multimodal imaging results are similar between 
the two eyes in each patient, making it viable to use 
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fellow eye as control in the event of intraocular thera-
peutical trials. Combination of therapies might be 
needed to treat this condition [73, 80, 81].

Given the retrospective nature of our study and 
the natural history of neurodegenerative decline in 
CLN3 patients, there were limitations of follow-up 
examinations.

Conclusions

The findings of an electronegative ERG with con-
current bull’s eye maculopathy in young age should 
prompt early neurological assessment for signs of 
neurodegeneration and referral for genomic investiga-
tion for CLN3 gene defects. Some children also expe-
rience isolated ocular presentations without neurobe-
havioral features. It is important that CLN3 disease is 
considered in electronegative ERG-bull’s eye macu-
lopathy patients even without neurological defect. 
Recognition of these features will assist in establish-
ing an early diagnosis enabling appropriate therapies, 
family planning, disease monitoring, and potential 
enrolment in clinical trials for novel therapies.

Monitoring visual function is challenging in this 
cohort as neurological deterioration progresses. 
Finding ocular biomarkers that can be consistently 
recorded in an outpatient setting is important for 
clinical trial outcome measures. Given their change 
throughout the natural history of the disease, EZ and 
FAF are the most promising structural parameters 
identified in our cohort.
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